F E F O F T F E S U M Ehebrew language. afflication of hebrew morfhology to comfuterTECHNIQUES FOR INVESTIGATION OF WORD ROOTS.
EY- LAZEWNIK, GRAINOM
NEW YGRK UNIV., N.Y.
REFCRT NUMEER ER-6-1263 FUE DATE FEE 68
CONTFACT OEC-1-7-661263-1656
EDRS FRICE MF-馬.75 HC- $\$ 5.60$ 138F.
DESCRIFTORS- *ALGORITHMS, *HEEREW, *COMFUTER FROGRAMS,
CONCORDANCES, INDEXES (LOCATEKS), INDEXING, CATALOGING,
: MORFHOLOGY (LANGUAGES), GOMFUTATIONAL LINGUISTICS, NOMINALS,
veres,
the oejective of this froject was to devise an algorithm FOR A STEM RECOGNITION FROGRAM DESIGNED TO SEARCH FOR THE ROOT OF ANY HEEREW WORD AS WELL AS TO DETECT INNER CHANGES ON THE GIVEN ROOT. SUCH AN ALGORITHM COULE EE USED IN LIERAFY cataloging and in cireating indenes and concordances of texts in the heefew language. in this study the heerew woit was CONCEIVED AS A CONSONANTAL, MORFHOLOGICAL UN:T. CENTRAL TO the entire feseafoch were tables and listings ofganizec on a grammatical easis and so devised as to fresent ceritain FERTINENT CORTELATIONS EETWEEN VEREALS AND NOMINALS AND THE affixal elements. thirty-six grammatical categories were set UF. FOUR TYFES GF AFFIXES WERE CORRELATED WITH THESE CATEGORIES. THE COMFUTER TECHNIQUE CONSISTED OF FRACTIONATING TEST WORES INTO FREVIQUSLY DEFINED ELEMENTS AND FORMING VARIOUS COMEINATIONS WHICH WERE SUESEQUENTLY SUEJECTEC TO VALICATION. the fesult of the comfutek functioning remained validatec ey cejective criteria. a sfecial reference cictionafy is now eeing comfiled for the fuifose of testing the residuum. of grammatically legitimate comeinations. (AUTHOR/DO)
U.S. DEPARTMENT OF HEALTH, EDUCATIIH \& WELFARE OFFICE OF EDUCAION
this document has been reproduced exactiy as recelved from the PERSOH OR ORGANIZATION ORIGINATIMG IT. POINTS OF VIEW OR OPIHIOKS STAIED DC NOT MECESSARLIY PEPRRESENT OFFICIAL OFFICE OF EDUCATIOM POSIIION OR POLICY.

FINAL REPORT
Project No. 6-1263
Contract No. OEC-17-061253-1656

CONSTRUCTION OF AN ALGORITHM FOR \subseteq ©TEM RECOGNITION
IN THE HEBREW LANGUAGE

Application of Hebrew Morphology to Computer Techniques for Investigation of Word Roots

February, 1968

U.S. DEPARTMENT OF
HEALTH, EDUCATION, AND WELFARE

Office of Education
Bureau of Research

FINAL REPORT
 Project No. 6-1263
 Contract No. OEC-17-061263-1656

CONSTRUCTION OF AN ALGORITHM FOR STEM RECOGNITION
 IN THE HEBREW IANGUAGE

Application of Hebrew Morphology to Computer Techniques for Investigation of Word Roots

February, 1968
U.S. DEPARTMENT OF

HEALTH, EDUCATION, AND WELFARE
Office of Education
Bureau of Research

CONSTRUCTION OF AN ALGORITHM FOR SITEM RECOGNITION IN THE HEBREW LANGUAGE

Project No. 6-1263
Contract No. OEC-17-061263-1656

Rabbi Grainom Lazewnik

February, 1968

The research reported herein was performed pursuant to a contruct with the Office of Eaucation, U. S. Deportment of Health, Education, and Welfare. Contractors undertaking such projects under Governnent sponsorship are encouraged to express freely their professional judgment in the conduct of the project. Points of view or opinions stated do not, therefore, necessarily represent official Office of Education position or policy.

New York University
New York, N. Y.

Sponsoring Committer: beof abrabain le nat: ah,

TUE HEBRGIV LaNGUAGE

> Aphidation of lieniew Morinolngy to Computer technioues for Investig;ition of Word Ronts
gilaINOM LaZERNJK

June, 1968
"A dissertation in the bepartmentof lebraic and Near dastern Studies subritted to the fuculty of the Graduate School of arts and science in partial fulfijlment of the requirememts for the degree of Doctor of Ihilosopiny at New York University."
approved
Advisor
Cinble of Cuncunco
Acknowledgment
Irde
 v
orreuthars V.
Nethod of lrunsliter:ation VII
Listing of 'inanslitcration SystemX
Dotinition of TermsXII
Jist of sbbreviations A111
CMPDER
L. PROMLEA ANT ODJECTIVE MF STUDY 1
II. WORPMGLOGY OF HEBREV 4
Auxiliary El enents 4
]refixues 6
Suffixes--Verbs 9
Listing of suffixes in rable C 11
Suftixes ! Mich Govern Eronominal 13
affixes
Lastiny of Sufrixes in Table cl 15
Pronominal aftixes (Table D) 16
Affizes of Nouns 1.7
The Passive Participle 19
Correlations of affixes against Grammar Categoriss (Tables) 20
 28
As: cmbly and Rejection Process 28
Fractionataon of the Tested ford 30
Comntiter affix-Splitting Based on Tables of dffixes 32
'jne Legritimate Combinations 33
Grammatically Illegitimate Combinations 3.3
Checking Valjdity of Combinaíions 33
Appiication of Empirical kules 36
dffix Sulitting by Given Tables of affixes (liiustrations) 39
Selectric Typing (Fiebrew) 41
Recordings by the computer 42

Thble of bondoits

rage
 DLCDNBKY 46
Grgunization of the Dactionary 47
Comments 48
V. Clasiaficatan on nouns 53
Tabie of Nom classes 55
Description of ciasses in Table of Nouns 59
VI. Classiblcumon of Vubis 66
The Present rarticinle 69
Orthorraphy of Verbs 69
The lassive larticiple 70
Intransitives that Govern an .ccusative 71
indexjcai vinrespondence of Source and rroject (Li) 72
Description of liasses (LI) 80
Reciassification (L2) 89
Special Ciasses and Unclassified (i3) 96
comments. 107
VEA. Results and diblujsiun 108
Viji. CONCLUSIENS 110
IX. SUMARY 112
x REFBRENCES 115

Acknordwiromont:
Why 1 inscribe woids of thatksabd acknowledsement to mand triemis and oollegnos without whose ononoration tio implementation ot our project wonld not have heen مossinle. finis cooneration varied in charactur ranging from o res of encourasement to actual participation in the technical aspects of the project, wiather montine or s!ecialized in nature.

First and foremost, 1 must acknovi edie an indelibie debt of Gratitude to frof. jack liellex and jrof. alice boilin. brof. lleller's association with the project can only be desjgnatcd as personal involvement, an involvement extending far beyond that to be expected. lis knowled;e of computer programming was indispensainle.

The inspiration which sustained and guaranteed the success of the mroject was manifested in the person of brof. Pollin, who was ever a snurce of unfajing encouragement and a wise mentor. It is to lrof. Pollin's riscerment and liveral understanding that the project owes its vory existence.

To the many who so kindly responded to the snlicitations for neoded information, let there here be cxpressed deepest thanks:

Dr. R. McDonald, Georgetown University, Dr. A. Oettinger, llarvard University, E. Pronko, National sicience Foundation, Ida Khodes, Mashingion, D. U., Dr. F. ll. Sinith, Jr. New York University, Dr. Zachary, Ilarvard University.

In wally and difterent ways the aid fondered by ail who cooperated in this study was invallable. in this comnection, mention must be made of the professors who never withheld their advice:

1rof. Sidney Roth, Miss Nancy Greenberg, Dr. Mortimer Shakun, Prof. David Rudavsky, Prof. John allen, Dr. Aaron Citron,

Our gratitude also includes the co-workers who toiled so faithfuily in their task:

Nir. D. Schindler, Nir. S. Neintraub, Dir. A. Friedman, dirs. S. Fields, Dr. Glichsberg, diss M. Snfer, Hiss S. Adier.

Host aspecially there are to be commended the lnyd and dedicated co-workers, bis. isther Zilberstein, amd biss. Muina thenig. To them is truly applicable that whioh issaid, "Beyond the call of duty." Their individual contribution summed un to a total of inostimable importance for the final materialization of the project.

It is difficult indeed to convey adematoly the denred of thatks when is called for in the Case of mir. Yaaknv Chenuka of Bar llan University. The suncr-structure of our stuty could almost be said to have hoen erected on the tasis of the scholarly article of Mr. Cheouka, and the more than kind attention he so praciously gave to the extended correspondence. which it was necessary to exchange with him.
and finally, we must reco;nize our debt to liof. Abraham 1. Katsh, chairman of the Institute of Hebraic studies and director of project--for it is to him that chief and unquestionable acknowlegenent must be made.

INTRODUCTION

Abstract

Since Hebrew is a highly inflected language, it presents special problems with reference to utilization of electronic machines for the construction of reference works such as large scale indices and concordances. Such literary references and sources as an index and concordance must be arranged according to alphabetical order of verb roots and nouns stripped of all auxiliary appendages. Any attempt to make an alphabetical listing in Hebrew requires a thorough knowledge of Hebrew grammar and the ability to recognize the various additive elements and so distinguish them from the root. This is the basic condirion which must preface such intended use of an electronic computer. This constitutes the motivation for our study.

In reality, the problem confronting our research, the problem the solution of which would constitute the contribution made by our study and justifying our study, is not a further classification and another variety of systematiza-

V.
tion of elements and units of the Hebrew language, which in bulk are familiar matters, but in the ferreting out, so to speak, of hidden unsuspected relationships involving radicsil elements and the introduction of an original, effecient and wide-ranging computer technique of broad application in the wake thereof.

In general, the course of the project consisted of first preparing correlation tables of required Hebrew elements, edapted to the programming process, and then the construction of the special reference dictionary.

Irregulars

This study took no account of rare irregulars which characterize Scripture, such as the scriptio defectiva,
 an additional Nun (3) for the third person plural, as in YaD'uN (77y7)) for YaD'u (7377), ${ }^{2}$ or plural for singular, e.g. TiQR'Na (TINTקラ) for TiQRa (N7קラi), ${ }^{3}$

1. QM, Joshua 7:13, QLT, Exodus 9:23.
2. Deuteronomy 8:16.
3. Exodus 1:10. The same example illustrates another peculiarity of Scriptural Kebrew: namely, the change of He (7) to an Alef (N).
or the rare variant for third person, feminine, singular of the perfect, represented by YZ'T ($\mathrm{TN}^{\prime} \mathrm{S}^{7}$) and $\mathrm{B}^{\prime T}$ ($5 N$) , found in the Misna. 4 This was found necessary, for otherwise there would not be the underlying assumption of the complete superiority of grammatical rule within our sphere of study. For those interested in that phase of Scripture concerned with the irregulars, many specialized works are available to aid in the study.

This study is moreover premised on the existence of the standard construction BiNYaNiM ($\square^{\boldsymbol{J}}$ J J $)$ only. The certain grammatical authorities ${ }^{5}$ list many additional forms, vestiges of archaic constructions, but the accepted view is that these represent exceptional verb roots and were thus so treated in this study. Examples of these additional forms are Taf'el (7 m 7 I), Šaf'el (72УU), etc.
4. S̈abat, 57 ā.
5. Z. Har Zéhav, Diqdua Hallason Ha'Ivrit, Vol. 3, part दे, pp. 408-476.

The technique of the study necessitated adoption of a satisfactory system of transliteration. In fact, two such systems were utilized. In actual composition of this draft or the thesis, the Precise Meduyaq ($\boldsymbol{P}^{7} 7 \boldsymbol{7}$) system established by the Academy of the Hebrew Language ${ }^{6}$ was used. This system is characterized by a one to one correspondence of Hebrew and Latin alphabet. I modified this by personal choice of ' to represent AleP (N) and $\underline{!}$ to represent ! Ayin (ν) for reasons of convenience. More urgent reasons, however, determined more radical modifications. This study, vis-a-vis the computer, was premised exclusively on the basis of the consonants of the Hebrew language. The consonantal vowels, however, posed a problem. By adopting the rule of exclusive and indiscriminate concern with the script, the consonantal vowel could be treated as a regular consonant when related to orthographical changes and retain the regular consonantal translit-
 For the convenience of the reader, at times both forms have been used, e.g. WLHQŠYT (ULHQQŠiT).

For the actual input fed to the computer, the IBM system was employed. The latter consists of a one-to-one correspondence in order of the English and Hebrew alphabets starting with Bet (2)
6. Killé Hatta'ătik Miktav :Vri Liktav Iatini, (Principles of Transliteration from Hebrew script to Latin Script), The Academy of the Hebrew Language, Jerusalem, 1956-57.
VIII.
which corresponds with A. For Alef (N), the symbol 10 was used. (See below.)

The radical $\frac{Q S T S}{\prime}$ was adopted as a model in place of the traditional P!L (Pa!al) (P) in order to avoid the complications introduced by the semi-vowel (\square^{9} פOM) as well as the change in sound of the Pe (\square) from p to I by elimination of the dagés in conjugation. The conventional radical QITL has been rejected because of its connotation.

In designating verb classes the conventional Hebrew symbolization is employed, based on the one-to-one correspondence of the consonants of Pa!al ($פ \boldsymbol{\text {) }}$, Pe, Ayin, Lamed, with the respective letters of the given radical.

The consonants $\underline{M}, \underline{N}, \underline{Z}, \underline{P}, \underline{K} \quad(D)$ present no confusion because of their variation in form as final letters since the computer has been so programed as to identify these in either form, final or not. A similar computer technique established reversal in reading from left to right.

Transliteration System Fed to Computer

Letter or Symbol Used	Hebrew Character	Name of Hebrew Letter
θ	N	Alef
A	2	Bet
B	1	Gimel
C	3	Dalet
D	π	Hé
E	7	Waw
F	T	Zayin
G	π	Het
H	0	Tet
I	\rightarrow	Yua
J	7	Kaf (final)
K	$כ$	Kaf
I	ל	Lamed
M	\square	Mém (final)
N	מ	Mém
\emptyset	1	Nun (final)
P	3	Nun
Q	0	Sameh
R	צ.	! Ayin
S	7	Fé (final)

Prinolituration Systom Poa to Computez (contimica)

Latter or Symuol Used	Hevien Character	Wame of Nevon Iettcr
T	®	Pé
U	Y	Zadi (Final)
V	v	zadi
W	p	quar
X	7	Rés
Y	V	S゙in
2	π	Taw

Definition of Terms
This study enploys a terminology which represents a usage both conventional and sonewhat subjective.

VERB - has its regular significance
NOUN - includes all substantives and all other elements apart from veribs

CONJUGATION - the forms of verb inflection
RCOT - the normal radical origin
STEM - the nucleus remaining after removal of all affixes EYTaN - the prefixes ($7 \pi^{\prime} \mathrm{K}$) $\mathbf{I}^{\prime}, \underline{Y}, \underline{T}, \underline{\mathbb{N}}$ of the imperfect

List of Abbreviations
The following aboreviations have been used in the various tables and lists presented in the text:

Perf. - rorfect Pa. - Pa!al

Part. - participle
Hoi. - Hof:al

Imp. - imperfect Pu. - Pu!al

Imper. - imperative
Nifif. - Nif:al
Inf. - infinitive
Hit. - Hitpa!el
Inf. Con. . infinitive construct
P. - person

Inf. Abs. - inifinitive abstract
Fem. - feminine
Hif. - Hif:il
Masc. - masculine
Pi. - Pi!el
Pl. - plural

Iist of Abbreviations (continued)

Sing.- singular
P.P. - passive participle
P.P.Pr. - passive participle with pronouns

In. - index number
G. - gender
P.A.- pronominal affix
A.E. - Auxilary element

Constr. - construction ($\boldsymbol{\Gamma}^{7}$)
Conj. - conjugation
L. - list

Suf. - suffix(es)
Gov. - governing, that govern
Pron. - pronouns

CHAPIER I

PROBIEM AND OBJECTIVE OF STUDY

Only recently have researchers achieved some success in attempts to use electronic data-processing techniques in the study of the Hebrew language. ${ }^{1}$ The morphology of the Hebrew language appears to militate against such an undertaking. In the preparation of a concordance to work in the English language, it is possible to instruct an electronic computer to classify words mechanically in alphabetical order, for example. Such a classification would be of little value in Hebrew. Semitic verbs as well as verbal nouns are based on bi-, ${ }^{2}$ tri-, or quadri-literal roots to which prefixes and suffixes may be appended. Such prefixes and suffixes may be prepositions or conjuctions; they may indicate tense, person, number or mood. If we take, for example, the
 we could not classify it alphabetically under W--which is essentially the conjuction 'and,' nor under I--which is the

1. Vide References $1,2,3,5,6$
2. Theoretically speaking only. In this study, however, for the sake of simplicity, no verbs have been considered as derived from bi-literal roots. See chapter on verb classification.
preposition 'to,' not under \underline{H}--which together with the \underline{Y} simply indicates that the verb is causitive. The meaniful unit of the verb begins with the first root letter Q, and only a classification by such a root letter would be of significant value. Samples taken from various types of literature show that more than 90% of the words would require an indication of the root. A computer could be instructed to consider $W-\underline{L}-H$ as prefix letters but they as well as more than half of the twenty-two letters in the Hebrew alphabet may be used both as root letters and as prefixes and suffixes.

It would, of course, be possible to indicate the roots manually and punch the data along with the input text. Such a process, however, is impractical for Hebrew because root identification requires a thorough mastery of Hebrew grammar. Only an expert in Hebrew grammar would be capable of punching cards in this manner. All of this makes the use of the computer for data processing in Hebrew impractical, and may account for the fact that until today nothing has been done for the creation of a literary index or concordance to any Hebrew work by means of electronic devices. The need for concordances to major literary works is felt by every scholar, researcher, and educator in the field, but the time and expense involved in producing them manually has been a major obstacle. Iibrary cataloguing is another field where electronic techniques cannot be utilized well in the Hebrew language because of the same problem.
-3-

In order to render the mechanical processing of Hebrew materials feasible, it would be necessary to devise an algorithm for a stem recognition program designed to search for the root of any Hebrew word regardless of any suffixes and prefixes, as well as to detect inner changes of the given root.

The objective of this project is to devise such an algorithm to be used for library cataloguing and for the creation of indices and concordances of texts in the Hebrew language.

CHAPTER II

MORPHOLOGY OF HEBREW

Auxiliary Elements ${ }^{1}$
Any primary research into the nature of the language requires a thorough understanding of its morphological aspects. It is therefore first necessary to review the laws of morphological change affecting the Hebrew language. Consider the realm of the auxiliary elements: the prepositional particals $\underline{B}, \underline{K}, \underline{I}, \underline{M}$, the conjuctive \underline{W}, the definite article H, the interrogative H, the conjuctive $\underset{\text { S }}{ } \underline{\text {, and the }}$ conjuctive Aramaic D naturalized into Hebrew. These present no special problem when used distinctly in conjuction with nouns or verbs, inflected or uninflected, with or without pronominals. The definite article \underline{H} provides the only albeit uncomplicated exception, conspicuously illegitimate with respect to veibs and to possessive inflected forms. Combination of these elements, however, present very special difficulties in usage.

No criteria, however, have ever been established for the usage of combined prefixed articles, preposticns, and conjuctions which are used so commonly in Hebrew. For example,

1. Termed in Hebrew "Otiyot Simu's."
in regard to the usage of the prefixed element, WLKS ($\mathrm{W}--$ the conjunction and; I --the preposition at, to, for; K --the preposition like, about, as; S--the relative pronoun that, which), common in medieval Talmudic commentaries, but never found in Scripture, there is no fixed rule as to preferable usage; thus $\underset{W}{ } \underline{I}, \underline{K}, \underline{S}$ or $\mathbb{W}, \underline{K}$, S, either affixed to Ya!aSe (Ya!ase) (H_{H}) (he will do), gre interchangeable renderings of "and when he will do." Again, HaLeKěseYa!äse
 ed by the addition of the interrogative H, harmonizes with the aesthetics of the language, yet, its occurrences in the literature is rare. Its usage is completely ignored in modern Hebrew. Lexicons and grammars in general disregard the problem of criteria for combination-formations.

Understandably, since this is a matter of empirical judgment, divergencies of opinion are to be expected. A listing of affixes for modern Hebrew has already been proposed ${ }^{2}$ but, a major change has been inserted in their treatment 3 as will be explained each in its place. I have fur. ther followed the course of rigor and included in my listings all possible combinations. My project has sought to

[^0]Lésnnenu, Vol. 27-28, P. 360, appendix 1
3. Certain affixes have been ignored while new ones have
 and KML (
embrace the Hebrew drawn from all epochs and from all lit.eratures. Obviously, specimens found in one type of literature do not necessarily occur in other types. Combinations found, for example, in medieval literature, are not found in Biblical and modern iiterature. The example already cited, HaLeKeseYa!ăse, is in point here. Strict limitations whereby to set off the various literatures, of course, are not scientifically possible. The individual researcher will, however, be able to judge the approximate sharacter of the Iiterature he is studying. Because of the exhaustive ${ }^{4}$ nature of my listing it will be possible to adapt it to any study purpose in this field whatsoever. The additional, extraneous information fed into the computer will not prejudice the accuracy of the analysis as long as the input of relevant data has been complete. Table A exhibits all possible functions of the indicated auxilaries.

```
Prefixes (Table B)5
```

The prefixes are distinguished from the auxilary elements by their greater gramatical inflexibility. They include:
', Y, T, N (EYTaN) ($7 \Pi^{\prime} N$), occuring in the imperfect;
4. Auxilary elements only. Certain other types of affixes were omitted, perhaps arbitrarily from the study. This will be touched upon later.
5. See Table B for all possible forms of prefixes in combination with the element governing varying grammatical functions.
(D) ${ }^{6} \underline{H}$ of Hif!il, Hof!al and Nif!al;
(D) H of Hitpa!el with transposition of Taw (π) in verbs whose first radical is $\underline{S}(\mathbb{O})$ or $\underline{\underline{S}}(\mathbb{U})$;

(D) H of Hitpa!el with the coalesced Taw (5) in verbs whose.
first radical is: \underline{D} (Dalet) (7);
e.g. DBQ (קבT);

I (Tet) (0),
e.g. THR (טהר);
or T (Taw) (π),
e.g. TMM (Tמם);
and the exceptions of other verbs whose Taw of Hitpa!el coalesces with the first letter of the radical;

(D) H of Hitpa!el when the first radical is $\underline{\underline{Z}}$ (Zadi) (Y) or \underline{Z} (Zayin) (T) and the Taw (Π) is mutated to a Tet (V) or Dalet (7) and transposed;

(N) M (Mem) (מ) of the participle of Pi!el, Pu!al, Hif!il and Hof!al;
(N) \underline{M} (Mem) ($口$) of Hitpa!el with transpoition of Taw (\boldsymbol{n})
6. The characters in parentheses represent the original letter of the affixes according to the computer transliteration. Vide Introduction.
7. Those exceptions have been categorized as such in the verb classification.
in verbs whose first radical is $\underline{S}(0)$ or $\underline{S}(\mathbb{W})$,
e.g. MiSTaDér (\quad), MiŠTaMér (7) ;
(N) M (Mem) (D) of the participle Hitpa!el with the coalesced Taw (π) in verbs whose first radical is \underline{D} (Dalet) (7), T (Tet) (v) or T (Taw) (π),

Mitahér (\quad) = (MiTraHéR-- מטוהר);

and the exceptions of other verbs whose taw (7) of Hitpa!el coalesces with the first letter of the radical,
e.g. MiNaBé (מבנ) = (MiTNaBé-גבJMin);
(N) \underline{M} (Mem) (D) of Hitpa!el when the first radical is \underline{Z} (Zadi.) (Y) or \underline{Z} (Zayin) (T) and the Taw (J) is mutated to a fet (ט) or Dalet (7) and transposed;
e.g. MiZTa.Dek (מצטוך);

MizDaMém (מ) ;
(P) \mathbb{N} (Nun) (3) of Nif!al;
(ZD) HT (He Taw) (5in) of Hitpa!el in the perfect;
(ZN) MT (Mem Taw) (D) of the participle of Hitpa!el;
($\phi \mathrm{ZI} \theta$) ${ }^{\prime} Y$ YIN (EYTaN) ($7 \pi / \mathrm{N}$) of the imperfect of Hitpa!el together With the Taw (Π) of Hitpa!el;
(ZP) NT (Nun Taw) ($\cap J$) of Nitpa!el--the Aramaic equivalent ${ }^{8}$ of Hitpa!el of the perfect adapted in Hebrew.

[^1]
$-9-$

Suffixes--Verbs (Table C) ${ }^{9}$
In treating the suffixes I have been guided in a preliminary fashion by the classification adopted by Meir Sapiro and Ya!akov Choueka ${ }^{10}$ which logically embraces suffixes which govern adjuncts and that of suffixes which do not. However, I have rejected the phonetic criterion the author's have employed in their classification.

The coalescence of the third radical with the suffix poses a problem of classification. The resultant disappearance in this case of a letter introduces the problem of whether to classify the compensatory dages forte as the final radical or as a suffix letter. The authors view considers the dages as replacing rather the first letters of the suffix. This has merit for it conserves the integrity of the radical and hence effects an economy in arrangement of stems. However, the number of radicals involved in this type of change is very little, and since this project is not oriented in stem dictionaries, the economy spoken of is of no value.

On the other hand it increases the number of suffixes unnecessarily. To illustrate-considering a Lamed Taw (Π^{\prime}) verb, e.g. KaRaT ($\pi 7 \square)$, in the analysis of the 2nd person, plural, perfect, the authors, because on the coalescence of the Taw (π)
9. Vide Table C.
10. Lešonénu, op. cit. p. 358.
of Tem (\square) and Ten (75) into the final Taw (5) of KaRaT
 two additional listings in the table of pronominal suffixes, namely \underline{M} (Mem) (D) and \mathbb{N} (Nun) (7). This is obviated in case of my system since I consider the dages forte as compensatory for the final Taw (71) and therefore in virtue retaining the original taw (5) of the suffixes.

The classification of the suffixes which I employ represents a further virtue of my system of analysis in that it imposes a consistency which excludes exceptions and effects greater order and clarity, all or which benefit the treatment or the material.

In sum, I found it advisable to consider the dages as replacement for the final radical in keeping with the traditional grammarians (so it seems to me). There is thus not only conserved the economy of the suffixes, but there is also introduced a consistency of form which tends to enhance the validity of conclusions.

The following is a discussion of suffixes which do not govern adjuncts: The null entry of Table C indicates absence of a suffixal attachment to the verb stem. A positive marking in the null row (/) therefore indicates the possibility of independent existence of verbs and nouns or legitimacy of direct attachment of the pronominal suffix to the verb stem. A negative marking (0) would, of course, indicate the con-
trary.

Listine oi Sufixixes in table \underline{C}
(D) $2 \mathrm{H}^{l l}$ of the perfect, secon person, feminine, singular; e.g. Qašari (nump);
(D2) $2 H$ of the active participle, first, second and third person, feminine, singular;
e.g. Q0STaH (MOUTק);
(D) H-cohortative (the lengthened form) of the first person of the imperfect, singular and plural;

same in the imperative, second person, masculine, singular;
e.g. QeŠaTaH (MOWT);
(E) W (Suruk) of the perfect, third person, plural, masculine, and I'minine;
e.g. našTu (7ט~p);
(T) W (Suruk) of the imperfect, second and third person, masculine, plural;

same For the imperative, second person, masculine, plural;
e.g. QišTu (רUup);
(I) \underline{Y} (Yud) of the imperfect, second person, feminine, singular;

same as in the imperative, second person, feminine, singular;

11. This H is marked 2F to differentiate between it and the cohortative H.
12. Exodus 3:3: "I will turn aside now."
（2）I（Taw）or the perrect，second person，masculine and fem－ inine，singular；

（Z）I（Taw）of the active participle，first，second and third person，feminine，singular；

（Z）T（Taw）of the infinitive construct of the Pe Yud（ 2 ） verbs；
e．g．（YŠV－ZW）ŠeVeT（ Γ（Zu）；
（ZE）WI（Naw Taw）（ M ）of the active participle，first，second and third person，feminine，plural；
e．g．QWŠTWT（QOSTTOT）（ Π TOUT P）；
 verbs；
e．g．the infinitive of the radical QNH，LQNWT（LiQNOT）
（ラ17アシ）
（III）YM（Yud Mem）（ ${ }^{\text {（ }}$ ）of the active participle，first and second person，masculine，plural；
e．g．QWŠTMM（GOSTTMM）（
（ ϕ I）YN（Yud Nun）（ $\zeta^{ク}$ ）the Aramaic counterpart of YM adapted in Hebrew；
（DP）NH（Nun He）（NJ）of the imperfect，second and third per－ son，feminine，plural；

（DP）NH（Nun He）（TI ）of the imperative，second person，fem－
inine, plural;

(EP) NN (Nun Suruq) (73) of the perfect first person, masculine and feminine, plural;
e.g. QŠTNW (QaŠaTNu) (7 קuט);
(IP) NY (Nun Yua) of the present participle, first person, singular;
e.E. DHMIN (DOMaNi) (3 3n77), SBWRNY (SVuRaNi) (237120); (IZ) TY (Taw Yud) (9 II) of the perfect first person, masculine and feminine, singular;

(MZ) TM (Taw Mem) ($\square \pi$) of the perfect, second person, masculine, plural;
e.g. QŠTTM (QeŠaTTeM)(ם ロטUT);
($\varnothing \mathrm{Z}) \mathrm{TN}$ (Taw Nun) (751) of the perfect, second person, feminine, plural;

Suffixes Which Govern Pronominal Affixes ${ }^{13}$ (Table Cl)
Since not all suffixes govern pronominal affixes, it was necessary to prepare an additional table listing those suifixes which do so. In the course of the affix-splitting ${ }^{14}$ process,
13. All possible pronominal affixes adjoined to each of these suffixes may be found in Table D.
14. See Chapter III.
the computer must determine whether a given pronominal affix may be attached to a given suffix. This purpose as well is one which is served by this table. This is immediately apparent by the strikingly large vacant area (0) in the proper place of Table C in contrast with the equally large marked area (/) for its counterpart in Table Cl. Table Cl necessarily would be limited to the active voice since the verbs tested govern accusatives. For example, in Table C the \underline{I} (taw) ($\overline{1}$) of the perfect and the participle is indicated (/) in all seven constructions and in Table CI the same I (Taw) (5) is indicated (/) only in the active constructions. This is because a pronominal suffix may appear only in those constructions. The numerous positive (/) markings for the null row or Table Cl, as well as in Table C, of course, indicate the generality of the independent occurrence without affixed suffixes of all the grammatical categories there listed. It is apparent then, that a pronominal affix may also be attached directly to the verib or noun, without necessary intermediation of a suffixal adjunct.

The interpretation of the null row under the listings of person, number, and gender, in the pronominal columns of Table Cl is readily made. (/) indicates that the pronominal afix may occur independently attached to the verb stem, e.g. $\frac{Q^{4} \text { STW }}{6}$

Listing of Suffixes in Table Cl

(E) \underline{W} (Šuruq) (G) of the perfect, third person, plural;
e.g. QŠTWHW (QiŠTuHu) (
(E) W (Šuruq) (7) same as above, of the imperfect, third person, masculine, plural;
e.g. Y@ŠTNHiv (YiQŠeTuFu) (יקשטרהו);
(E) W (Šuruq) (1) of the imperative, second person, masculine, plural;

(I) \underline{Y} (Yud) (\geqslant) of the imperfect, second person, feminine, singular;

(Z) \underline{T} (Taw) (π) of the perfect, second person, feminine, singular;

(Z) T (naw) (π) of the perfect, third person, singular, fem-
 a pronominal;

QSTTK (QESaTaTKa) (7
(Z) \underline{I} (Taw) (π) of the participle, first, second and third person, feminine, singular;
e.g. QWSTHT (QOŠeTeT) (חטUTP);
(ZE) WI (Waw Taw) (M I) of the participle, first, second and third person, feminine, plural;

(EP) NW (Nun Šuruq) (13) of the perfect, first person, plural;

(IZ) TY (Taw Yud) (${ }^{\mathrm{J}}$) of the perfect, first person, singular;

 was not entered as a suffix in our classification. Rather $4 \mathbb{N T}$ (7) was entered as a pronominal affix. The affix-splitting in this case would then be Q STT-T-WNY, not $Q \mathbf{S T} T-T W-N Y$, contrary to the suggestion made in LeésonéNu. ${ }^{15}$ This again is a result of the above mentioned decision to keep the suffixes constant.

Pronominal Affixes (Table D)
The pronominal affixes consist of objective pronouns affixed to veros, and the possessive pronouns attached to nouns. The listings of person, number and gender in the verbal columns (15 through 21) refer to the subject of the verb; person, number and gender in the pronominal columns (28 through 34) refer to the object of the verb. It may seem somewhat faradoxical that in those cases where the verbal categories are consistently null (i.e. the null row is marked /) the pronominal columns should as consistently take a contrary grading (i.e.
15. op. cit.
the null row is marked 0). The (/) grading in the null row for the verbal categories presents no difficulty since the meaning is clear, i.e. these categories can exist independently without the need to govern an affix. The matter of gradings for the pronominal columns is not so obvious. The explanation lies in the fact that the pronominal columns represent essentially particularizations of the generalizations indicated by the affixes listed. The grading in effect responds to the question: "Does the particularization exist or not?" Therefore it is meaningless to speak of particulars When the general is absent (null). The mark is thus (0).

Affixes of Nouns

The assimilation of auxilary elements with nouns is a relatively simple matter. The combinations and usages herein pertaining, however, vary as much with the type of literature as in the case of verbs.

Prefixes are irrelevant to nouns. This fact was of considerable utility in the various operations connected with this study, as illustrated in Chapter III. ${ }^{16}$

The possessives are naturally included in the pronominal affixes. In the column of the pronominal affixes (28 through 34) the person, gender and number of the given pronoun are indicated.
16. See p. 33 "Checking Validity of Combinations."

The nature of the gender and number listing in the noun columns is immaterial with respect to the pronominal affix tested. A possessive such as the Waw (1) of ŠLW (ŠeLo) (7^{2} そiv) may be indifferently attached either to a masculine noun, e.g. DWD, DWDN (DOD, DODO) (1777 , 717) or to a feminine noun, e.g. ${ }^{\prime} V N$, 'VNW (EVEN, AVNO) (אבת), The column of nouns in the absolute state, Table D, column 27, is consistently marked (0). The reason is obvious. A noun in the absolute state cannot be adjoined to an affix.

The following are taken as the substantive suffixes:
(D) H (프) (7) Locale--(locative accusative);
e.g. 'RZH (ARZaH) (
(2D) $2 \underline{H}(2 \underline{H e ́})(\mathrm{H})$ tone-bearing (Qamaz) Hé (N);

(I) \underline{Y} (Yud) (7) of construct state;

(Z) T (Taw) (π) of construct state;
e.g. TWRT (TORaT) (TרוT);
(IT) WI (Waw Taw) (Π 7) plural, masculine and feminine;

(MI) YM (Yud Mem) (${ }^{\text {P }}$), plural, masculine;
e.g. BNYM (BaNiM)(
(NI) YN (Yud Nun) ($\Gamma^{\text {P }}$) Aramaic plural adopted in Hebrew;

(ZI) YT (Yud Taw) (Π^{7}) singular feminine, characterized by

(ZEQ) 'WT (Alef Waw Taw) (N) Mishnaic plural, especially for nouns of Greek and Latin etymology;
e.g. TITR'WI (TeaTRa'oT) (ת7אראט);
(MI®) 'YM (Alef Yud Mem) (N) masculine plural formed by final 'YM (K);
e.g. HG'YM (HaGaiM) (םיאג).

The Passive Participle

In all five tables the passive participle (35 through 36 have been checked against affix entries and marked accordingly, both for absolute and construct forms; e.g. QLSWT (QaŠuT) ($)$ Q Q

-21-

-2?-

-23-

-25-

CHAPTER III
THE COMPUIER AND HEBREW MORPHOLOGY

Assembly and Rejection Process

Understandably，in order to identify the root or basic form of a given verb or noun we must draw on what－ ever related lexicographical and grammatical knowledge we may have．To endow the computer with capacity for stem recognition presupposes its preliminary endowment with our own knowledge in this respect．

For example，the initial step in examining the word
 tion of its various，possible components．The \underline{Y} and K（Yud and Kaf）may be the possessive pronoun（yours），but they may also be part of a noun，as in BZYK（BaZiK）（ 7^{\prime} Tコ）．
 exists．Similarly，！YNK（！éNeKa）（ 7 フクフラ）is eliminated， recognizing $B(\mathcal{Z}$ ）as a preposition．Also for B！YNY（Bě！éneY） （ フ フフリン），recognizing the possessive $K(7)$ ，and for YNY．
 YK is affixed to the noun baYiN（ $\rceil^{7} Y$ ）as the plural pos－ sessive．pronoun，and the $\underline{B}(2)$ as a preposition．

This is the process of human reasoning．The computer
must function in an analogous manner. It must respond to the purely morphological aspect of the word analyzed by evoking all the possible, grammatical implications of this morphology.

This process was first used for mechanical analyzation of Russian inflected forms. It was described as "'affixsplitting' and consists of matching the end of a referred word against a list of recognized affixes having gramatical significance. ${ }^{11}$ In the case of the Hebrew language, affixes are attached both at tie beginning and the end of a word. An exhaustive ${ }^{2}$ compilation of auxilaxy elements, prefixes, suffixes, and pronominal affixes is presented together with their functional roles. ${ }^{3}$ The computer's initial task having been completed, there arises the problem of the methodical elimination of the irrelevant, mechanical fractionations produced by the instrument. The continuing process must follow the path taken by the human agent, assembly and rejection on the basis of grammar, and then assembly and rejection on the basts of lexicography.

1. J. McDaniel and S. Whelan, "The Grammatical Interpretation of Russian Inflected Forms Using A Stem Dictionary," National Physical Laboratory, Teddington, England, Proceedings of the 1961 International Conference on Machine Translation Applied Language Analysis, 1961, pp. 364-378.
2. Not precisely. Vid. footnote 5, Chapter II.
3. Via. Tables.

Fractionation of the Tested Word
The illustration which follows should demonstrate clearly the underlying functions of the computer; namely the mechanical affix-splitting of the material studied, and selection of meaningful combinations of the various fractionations. The word MiTLuNoT, vowel-less MTLWNWT, transliterated ZEPELZN ${ }^{4}$ was fed into the computer. Besides the word itself as an intact unit, fourteen combinations were produced.

Although the illustration given involves minimally a triliteral stem, it must be cautioned at this point that the computer is not restricted thereby, but in its functioning will in general produce biliteral and even monoliteral stems. Iesonénu's suggestion that monoliteral stems be omitted was not accepted. The authors maintain that "exceptions are only Pë-Nun-Lamed-Hé ($\mathrm{N}^{\prime \prime}$ ל-3"9) verbs in constructions Hif!il, Huf!al, and the imperfect of pa!al. But there are only five
 and each such verb possesses only seven diverse forms of a
 (הכ). That is to say: In total there are 35 forms: and with these it is possible to deal individually." 5
4. The machine has done the reversing of characters left to right; see introduction.
5. Y. Cheouka and M. Šapiro, Lêsonénu, op. cit. p. 361.
6. HKW has been omitted from the article, apparently through ain oversight.

We know, however, that more of this type exist. For example, the patal of veros whose radicals end in IT (5)

 for the first and third person) plural of verbs, the radicals or which end in TTP (JIT), e.g. KTP (Sin), in Hif!il, HKTY (HiKiTi) (

True that Léšonénu is self-consistent. The number of verb stems in accordance with their view, remains constant since the final radical is retained in the correct fractionation. My system, however, demands the shifting of the final radical for the purpose of retaining the integrity and constancy of the suffixes, therefore adding to the number of monoliteral stems. Thus while the first person, singular,
 by Lě̌sonénu into MT-Y, the system here employed would give M-TY retaining the full suffix. Nevertheless, it seems to be superiluous to make the suggested ommissions. The computer which functions on the basis of the listed affixes necessarily is limited in its choice of stem fractionation. As the illustration demonstrates; the minimal number of letters in the stem are three. The number of verbs that would perforce be reduced to a single lettered stem are thus kept to a minimum. Consideration of devising a table for monoliteral verbs was therefore dismissed.

Computer Affix-Splitting Based on Tables of Affixes

P.A.	Suffix	Stem	Preijx	A.E.		
		zepeiz	N		2EPELZN	1.
		ZEPELZ		N	ZEPELIEN	2.
		ZEPEL	2 N		ZEPELZN	3.
		ZEPEL	z	N	ZEPELIRN	4.
	2 E	PELZN			ZEPELIZN	5.
	$2 E$	PELZ			ZEPEIZN	6.
	ZE	PELZ		N	ZEPELZN	7.
	$2 E$	PEL	2 N		ZEPELZN	8.
	2E	PEL	z	N	ZEPEIZN	9.
	z	EPELEN			ZEPELZN	10.
	2	EPELZ	N		ZEFELZN	11.
	z	EPELZ		N	ZEPELZN	12.
	2	EPEL	\%		ZEPELZN	13.
	Z	EPEL	z	\mathbb{N}	ZEPELZN	14.

The application of a pertinent, operational rule was to lead to the subsequent rejection of three of these combinations by the computer, namely numbers 4, 9 and 14. The eleven remaining combinations could not be disqualified at this stage by grammatical criteria, since they are gramatically legitimate combinations. Each represents a recognized linguistic form either as a verb and/or noun.

The Legitimate Combinations

P.A.	Suffix	Stem	Prefix	A.E.	Recognized Form
1.		ZEPELZ	N		TBETH M $(5275)^{7}$
2.		ZEPELZ		N	
3.		ZEPEL	$2 \mathbb{N}$		
5.	2E	PELZN			TV !
6.	2E	PELZ	N		TW SNRPM (51037203$)$
7.	ZE	PELZ		N	TV
8.	2 E	PEL	ZNT		TW TŠQ TM ($5100 / \mathrm{ST}$)
10.	z	EPELZN			T TSTWQ (กטणרק)
11.	2	EPELZ	N		
12.	Z	EPELZ		N	
13.	Z	EPEL	ZNT		T SNRP TM (5037 (m)

Gramnatically Illegitimate Combinations

P.A.	Suffix	Stem	Prefix	A.E.
4.		ZEPEL	Z	N
9.	$Z E$	PEL	Z	N
14.	Z	$E P E L$	Z	N

Checking Validity of Combixations
Specially designed tables ${ }^{9}$ served as the basis which permitted the computer to determine the rejection of the disqual-
7. Mětarbét (- MánaBër)
8. RBH (verb) - MiTRaBoT
9. See pages 20-27
ified combinations. Their rationale expressed itself in correlating the various affixes with grammatical categories. Iesitimate correlations are designated X; those not so, are maxined 0. 10 In addition, an independent null row is indicated. Any verb or noun, whether inflected or not, may of course, occur without any auxilery element, but it is impossible for the infinitive, perfect, or participle of the constructions of the Nif:al, Hif:il and Hitpa:ĕl to oncur without a prefix; nor may the imperfect of a verb occur without the prefixes EYTAN. The null row, therefore, indicates Whether a given category may exist independently of affix olements.

One hundred thirty-two arrixes which are correlated against thirty-six categories were listed. The computer checked each fractionation of a given tested word which has been identified as one of the affixes listed, against the columns of categories; legitimacy was then marked (/). If it was not legitimate, the mark was then (0). There must always be four elements that participate in the combination, namely: auxilary element, preiix, suffix and pronominal affix. This participation may be of a positive or negative
10. In the tables presented in this paper, a diagnal line (/) indicates a positive marking, and a blank, a negative.
nature. The task 0 i che computer is then to decide on tie lesitimacy of the specific element whether in positive or negative phase. This it does on the basis of the information supplied in the table belonging to the civen element. For legitimacy of the positive phase, it consults the row designating the specific affix; for legitimacy of the negative phase, it consults the associated null row.

A final recording was then drawn by the computer consequent upon derining the status of the four classes of the given combinations resulting from testing the grammatical coherence of the two kinds of prefixes and the two kinds of suficixes. The final recording is represented by that point of the given column corresponding to a particular fractionation-combination, which is now checked by the computer. If an (/) appears at this point, the combination is allowable. If even so much as one component of the tested combination has been graded (0), the relevant point in the column was marked (0). ${ }^{11}$ Such a result which does not subscribe to permissability is illustrated above in the case oi categories 4, 9 and 14. These were disqualified in the first sever categories of a common verbal nature. ${ }^{12}$ Matched against the verbal categories, the I of EYTAN, characterisiric of the perfect, is incompatible with the prepositional
11. See further illustration below of recording by the computer.
12. See listing of categories in the Tables.
M. The combinations therefore, had no reievancy for the veribal categories in general. They were hence lacking in minimal properties necessary for their inclusion as acceptable combinations. Thus there is exemplified a contribution made by the computer in establisning a basic mule--that which is not relevant to tense and mode cannot be considered a verio.

When matched against the substantive categories, T as a prefix cannot pertain. The entire combination was therefore canceled since neither verb nor noun could be included. Similarly, if the given combination tests (O) against the list of construction categories, or against the categories of person, number and gender, it is outlawed as a verb or noun.

Also the entire combination is invalid if the result of checking a pronominal suffix against the categories of person, number or genãer is (0), siace a pronominal suffix is necessarily distinguished by person, number and gender.

Application of Empirical Rula:
Further mules were applicable at any phase of the computer's functioning inclusive of the correlation of the fractionations against grammatical categories.
-37-

Though formal gramar is silent on the matter, it is a linguistic fact that a verb radical cannot excede six letters. A stem in a fractionation which consists evenly of six or greater than six characters therefore has no possibility of being a verb. The first item in tine above illustration that was ruled out through the application of this rule exemplifies this case.

A maximum of five obtainable in the quadriliteral roots of the sibilants $\underline{Z}, \underline{s}, \underline{Z}, \underline{\underline{S}}(T, O, Y, Z)$ holds only for the Hitpa!el. The first pair of characters (right to left)must then be one of the following: TSN (\mathbb{T}), $\frac{T Z}{\sigma}$ (ט), TS (DZ ($7 T$). Otherwise, this combination must also be excluded as a verb. Combinations 3 and 11 of the above illustration were canceled out through the application of this rule.

As we went along, it was possible to introduce empirical rules established on the basis of our observations. For example, the words HND'WT (HoDa'oT) WHLN'WT (VeHaLVa'oT) (הרד (הארח רהלרארח) presented an ambiguity to the computer, so that the computer analyzed these as pertaining to verbal categories. It mistook the $\underline{H}\left(\mathbb{T}\right.$) of $\mathrm{H} \mathrm{HD}^{\prime} \mathrm{WT}$ and HLW 'WT (HoDa'ot and HaLVa'ot) (הוראר) as being the prefix of Nif!al or Hif!il; the final WT (517) in both words as belonging to the infinitive of the Lamed Hé (H $^{\prime \prime}$) verbs. An empirical rule was therefore devised at this point for guidance of the computer. Since final WT (17) is applicable

In the infinitive only, in the case of verbs of which the final, third letter of the radical is $\underline{H}(\pi)$, the $W I(\pi 7)$ can thus be considered as pertaining to the verbal category only if the preceding stem fractionation consists of two charaters characteristic for Lamed-Hé (ל ל) verbs only. A combination which included more than two characters in the stem was ruled out as an infinitive form of Hif!il and Nif!al, and therefore as a verb.

In brief, a description has been given of the functioning of the computer. The operation followed four phases. The tested word was first analyzed into legitimate fractions. The number of resulting combinations was further reduced by the application of certain empirical rules derived from grammatical observations. The remaining fractionations were then correlated with the grammatical categories. Finally the valid combinations were then indicated.
affix splitting by given tables of afpixes

ZF*ELD		E	2E+ELDF
ZE*EL		[E	2E+ELEE
7E*EL	D	E	TE+ELDE
ELDE			zetelde
ELD		E	ZE+ELDE
FL		Le	\% EtELDF
EL	D	E	ZE+ELDE
*EIDE			TE+ELDE
*ELC			ZE+ELDE
*EL		DE	zetelde
*EL	D	E	ZE+ELDE
E*ELDE			ZE+ELDE
E*ELD		E	zetelde
E*EL		DE	ZE+ELDE
E*EL	D	E	2F+ELDE

affix splitting ey given tables cf affixes

	ZE*CE	D		2F+CED
	ZE*CE		ᄃ	4E+CED
	ZE*CE		L2	2E+CED
2E*	CED			2E+CED
2.E*	CE	D		ZE+CED
2E*	CE		D	ZF+CED
2.E*	CE		D2	2E+CED
2E	*CED			7E+CED
2 E	* CE	D		2.E+CED
2 E	* CE		D	2E+CED
2 E	* CE		[2	$2 \mathrm{E}+\mathrm{CED}$
2	E*CED			$2 \mathrm{E}+\mathrm{CED}$
2	E*CE	D		ZE+CED
2	E*CE		D	2E+CED
2	E*CE		D2	2E+CED

Se	c．	תッ：ワロ	r	
ョงコา		תיצים		\because
－		לוברום．	5if	
\％		לוּוּ	3	0
	17	3ッツツ		
－	：		r	
4	17	רירצ		「＇
＂היהּ	74	374	Rer	
ה	17	3 3－$^{\text {a }}$	\square	r
	\cap			
	n	9ック5	\cdots	
הם לוברוה	3	ルニッツ		＂
ויתלרצות	3	צות	10	
\％הם	\bigcirc	לרנר	n	i

0% ：
Counting from right to left，the first colomn is that of auxiliary elements；the second，of prefixes；the third，of stems；the fourth， of süffixes．Waw Taw（ $\mathcal{N} /$ ）cannot be a pronominal．The fifth column is therefore void．
gitn ；
－
$"$

$$
n n_{n}
$$

Page 42

Recordi

LAZEWNIK PHASE 2 DULBLES TREATED AUG.29,1967
4

ZEPELZN
SUFFIX 3
SUFFIX 1
PREFIX 2
N
prefix 1

| 1 |
| :--- |
| 1 |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | c |
| 1 |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |

ZEPELZN
SUFFIX 3
SUFFIX 1
PREFIX 2
PREFIX 1
N

C	1	C	C	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	C	0	1	1	1	0	1	1	0	1	1	0	1	1	1	1	1	1	1	1	1

ZEPELZN
SUFFIX 3
SUFFIX 1
PREFIX 2
2N
PREFIX 1

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0

ZEPELZN
SUFFIX 3
SUFFIX 1
PREFIX 2 PREFIX 1

0	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	0	0

Recordings by the computer

Sample Illustration of Grammatical Validation by Computer
The 36 columns correspond to the 36 gramatical categories.
zepelz
N Some changes in the data have been entered later.

1	1	1	1	1	1	1	1	1	1	1	1	c	c	c	c	c	c	0	0	0	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	0	c	c	0	c	c	1	1	1	1	1	1	1	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	0	0	0	0	c	c	0	0	0	0	c	0	0	0	0

1	1	1	1	1	1	1	1	1	1	1	1	c	c	c	c	0	c	0	0	0	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	0	1	1	c	0	c	0	0	0	0	0	0	1

1	1	1	1	1	1	1	1	1	1	1	1	c	0	0	0	0	0	0	0	0	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

1	1	1	1	1	1	1	1	1	1	1	1	C	C	C	C	0	C	0	0	0	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	0	1	1	1	1	0	0	C	0	c	C	1	1	1	1	1	1	1	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	0	1	1	1.	1	0	0	C	0	C	C	c	0	c	C	c	0	0	0	0

Page 43
Sample
LAZEWNIK PHASE 2 DOUBLES TREATED AUG.29.1967

ZEPELIN											ZE						PELZN					
SUFFIX 3																						
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
SUFFIX 1																						
2 E	C	1	C	C	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	0	1
PREFFIX 2																						
	1	1	1	1	1	1	1	0	1	1	0	1	1	0	1	1	1	1	1	1	1	1
PREFIX 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	C	1	C	0	1	1	1	C	1	1	0	1	1	0	1	1	1	1	0	1	0	1

ZEPEL ZN
 SUFFIX 3

SUFFIX 1
ZF
prefix 2 NREFIX
PR

2E

| 1 |
| :--- |
| C | 1 | 0 | C | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 |
| C | 1 | 0 | C | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 1 |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |

ZEPELZN
SUFFIX 3
SUFFIX 1
ZE
PREFIX 2
POEFIX 1 N

0	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	0	0	1	1	1	0	1	1	0	1	1	0	1	1	1	1	0	1	0	1	1

Z EPEL ZN
SUFFIX 3
SUFFIX 1
ZE
PREFIX 2 ZN
PREFIX 1

PELZN

PELZ
N

PEIZ
N

1	1	1	1	1	1	1	1	1	1	1	1	1	c	c	c	c	c	c	0	0	0	1
1	1	1	1	1	0	1	0	1	1	1	0	1	1	c	c	c	c	c	0	0	1	1
0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1	1	1	1	0	1	0	1	1	C	0	1	C	C	c	0	0	c	0	0	0	1

PEL
2N

Page 44

LAZEWNIK PHASE 2 DUUBLES TREATED AUG. 29.1967

ZEPELZN SUFFIX 3

SUFFIX 1
ZE
PREFIX 2 PREFIX 1 N

2E

ZEPELZN
SUFFIX 3
SUFFIX 1 ? PREFIX 1

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	0	1	1	0	1	1	0	1	1	1	1	1	0	1	1	0

ZEPELZN
SUFFIX 3
SUFFIX 1 $\begin{array}{ll}2 & \\ \text { PREFIX } & 2\end{array}$ N
PRFFIX 1

ZEPELZN
SUFFIX 3

SUFFIX 1 PREFIX 2 PREFIX 1 N | C | 1 | C | C | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :--- |
| C | 1 | C | C | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 |

Sample Illustration of Grammatical Validation by Computrr

PEL 2 N
$\begin{array}{llllllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & C & C & C & 0 & C & C & 0 & 0 & 0 & 1\end{array}$

 EPELZN
$\begin{array}{lllllllllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & C & C & C & 0 & 0 & C & 0 & 0 & 0 & 1\end{array}$
$\begin{array}{llllllllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & C & 1 & 1 & 1 & c & C & c & c & c & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{llllllllllllllllllllllll}0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
 EPELZ N

 $\begin{array}{llllllllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & C & C & C & 0 & C & 0 & c & 0 & 0\end{array}$ $\begin{array}{llllllllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & C & C & C & 0 & C & C & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0\end{array}$ | 1 |
| :--- |
| 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | c | 0 | C | 0 | 0 | 0 | 0 | EPELZ N

$\begin{array}{lllllllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & C & C & C & C & C & C & 0 & C & 0 & 1\end{array}$ $\begin{array}{llllllllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & -0 & 1 & 1 & 1 & C & C & 0 & c & 0 & 0 & 0 & 0 & 0\end{array}$ $\begin{array}{lllllllllllllllllllllllll}0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & C & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$ | 1 |
| :--- |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | c | 0 | 1 | 1 | C | C | C | c | c | c | 0 | 0 | 0 | 0 |

Page 45

LAZEWNIK PHASE 2 DOUBLES TREATED AUG.29,1967
7

ZEPELZN

 SUFFIX 3SUFFIX 1
PREFIX 2 2N
PREFIX 1

	1

1

EPEL

2N | 1 | |
| :--- |
| 0 | 1 | C | C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | |

ZEPELZN

 SUFF IX 3SUFFIX 1 7. PREFIX 2 PREFIX 1 . N

EPEL
2

$\begin{array}{llllllllllllllllllllllll}1 & 1 & C & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1\end{array}$

 IPA IP
SUFFIX 3
SUFFIX 1
PREFIX 2 PREFIX 1 A

IPA I
SUFFIX 3 I
SUFFIX 1
PREFIX 2
PREFIX 1
$P A$

| 1 |
| :---: |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

EPEL

 ZN EPEE \quad Z N
 If
A

PA

CHAPTER IV

the Construction of a reference dictionaiy

The introductory chapters dealt with the purposes and technique of the computer study. The final results of this study were embodied in combinations of fractionations of test words processed by the computer. Before determining the validity of the various combinations, their stems in turn must first be examined for valid status To do this, it is necessary to consult a specialized work, a specialized reference dictionary. This dictionary should contain systematized information touching upon all pertinent relationships of the given stem; grammatical, etymological and comparative philological aspects. That is, pertinent relationships apart from particular denotations. Therefore, it is to be expected that after the computer operations there may remain cases of semantic ambiguity.

Such a dictionary has been compiled. There are two main sections; verbs and nouns. The noun section is subdivided into nouns derived from verb roots and those not so.

Though present participles serve as nominals, they have
not been listed with the nouns. Information regarding them was incorporated into the verb programming. The same is true for the infinitive construct. This was advisable in order to avoid duplication.

Organization of the Dictionary
In regard to each entry, the following features were noted:

1. Class index
2. Occurrence in idiomatic expression, or lack of occurrence
3. Part of speech
4. Declinability
5. Occursence with prefixes $\underline{B}, \underline{K}, \underline{L}, \underline{M}(D, \zeta, ~, ~ 工)$, or not

6. Occurrence with conjunction Waw (7) or not
7. Occurrence with conjunction Šin (w) or not
8. Occurrence with Aramaic conjunction D (7) or not
9. Literary or epochal source: Scripture (N); Talmud (Z); literature of the Middle Ages (A); literature of Modern Times (G)
10. Philological origin: Aramaic (9); Arabic (R): Greek (I); Latin (I)
11. Nouns of verbal origin (such nouns as PiQaDoN-- 777 (i) were entered in a special section and their roots indicated at the same point. The unknown origin of such ele-
mentary nouns as MaYiM ($)$), LeHeM (לחים) , ŠuZHaN ($)$), were not investicgated.
12. In a separate column, a notation was made of the construction origin of the entry.
13. The scriptio plena was indicated at the corresponding point of a special column. The symbolization employed consisted of a plus (+), a number and the letter, usually E (Waw -7) or I (Yud-?). The interpretation is as follows: Insert the required E or I in the position indicated by the number.

Each itein listed above was indexed by an appropriate symbol indicated "yes" or "no" at the position of entry in the dictionary.

Conments

For the sake of clarification some further remarks have been thought to ve of value. It is to be noted once more that the emphasis in this treatise has been almost completely on morphology. It should therefore not be a matter of surprise that entries in the dictionary bave been ordered, often with striking disparity in semantic character, on the basis of form onl.y.

Thus the three words KFR ($7, \mathcal{J}$) denoting ransom, KFR
 divergent in denotation, are equal morphologically with the
exception that KFR (KéFaR) (7⿹コ) meaning village, falls into a more distinguished morphologic class for the reason that it takes a plural form, a fact which is not true of the other two. Therefore, according to the rule theit has been accepted for the organization of the dictionary, the first two belong to one class while the third belongs to a different class.

Item 2

The recording of idiomatics and compounds associated with a given entry will prove to be useful in enabling the computer to select such elements with preceding and/or following words from tested text material. A valuable tool will thus be furnished for characterizing literary features of the text.

Item 4
Though morphologically, every noun entry belongs to an appropriate declension, in practice, specific entries must obviously be excluded from these declension forms. For this reason, it was necessary to add a special column indicating declinability of the entry. In this regard it is impossible to apply a consistent rule. Even Šosan, in general, indicates declension forms for his ertries. These were bodily inclu
those nominals for which no declension forms are recorded in Even Šos̃an，the question became a matter of choice for the compiler．The judgement in this case depended upon the frequency of occurrence of the entry．A rare nominal the sense of which contrindicated declension，e．g．GYHNWM （GéHiNoM）（ロา3กフス）was listed as undeclinable．This was also done for abbreviations and acrostics．

Item 5

Although in general the various nominals may occur with
 7 ），nevertheless，it was necessary to specify the occurence in each case separately．Besides the obvious necessity in the case of abbreviations and acrostics；certain entries rep－ resent a new word unit resulting from fusion of auxilaries and original nominals．Illustration of the latter are B！RK
 emplify certain traditional abbreviations employed in con－ junction with auxilary elements which have become so natural－ ized into the language that Even Šosan in the 1967 edition of his dictionary，accepted them as fully matured terms．An extreme illustration of the conjuctive Waw（7）is afforded

 two legends for the identical designation，as in the above
examples, the reference dictionary made similar entries for the abbreviation.

Item 10
The literary period was judged by the morphology peculiar to the period rather than by the philoloric origin of the entry. For example, KBWD (KiBuD) (772コ), peculiar to the Misna period though the radical KBD (72D) is frequent
 even though the radical 'DS (ADS) (UTN) is Aramaic.

Item 12
The original intention in reference toitem 12 was to assemble a suificiently large collection of detail which could lead to the formulation of principles for the formation of nominals of verbal origin. However, this was found to constitute a study not as yet undertaken, and too overambitious a study from the point of view of the present purpose.

Item 13
This feature, since its importance for the study of stem recognition was not high, was excluded at first when planning the construction of the dictionary. However, for the sake of completeness, it was finally decided to include this additional feature on the possibility that appertaining considerations
would prove of measurable importance in the further study oif the subject. The colurn indicating the construction from which the entry is derived is therefore lacking in some of the alphabetical listings.

CHAPTER V

CLASSIFICATION OF NOUNS

Abstract

The dictionary Milon Hahadas ${ }^{\text {Ml }}$ was thoroughly scrutinized for the purpose of drawing up the listing of the noun section of our reference dictionary. Those nouns which are the more specialized technical terms, or international tems of foreign origin, or generic nouns which occur very infrequently, were not included in the compilation, according to the discretion of the compiler. A record was kept, however, of those words which were omitted.

Forty-three ${ }^{2}$ noun models were prepared indicating the basic noun, feminized form if existent, plural masculine or feminine if relevant. Each model is based on a special

1. Even Šošan, Milon Hahadas̆, Jerusalem, 1967. (The first three volumes only, the rest of the dictionary was based on the 1962 edition.)
2. The preparation of these models was influenced by the set of twenty-two models contained in Lě̌onénu, op. cit., appendix 3. I thank Mr . Cheuoka for sending me a corrected and revised list of twenty-eight models. This study, however, has established a higher number (43) of distinct classes.
characteristic which represents regularities governed by rules which determine the formation of the feminine, when existent, the construct state, and the plural with its special morphology.

Certain anamalous noun specimens, singular and plural, were entered individually in the dictionary. The entire list of noun classes with explanation follows.

$\begin{gathered} \text { Lacic } \\ (\mathrm{W}) \lambda(H) \dot{H} \dot{H} \end{gathered}$	$\begin{aligned} & U Q \subset a \\ & W X(H) \dot{H} \dot{H} \end{aligned}$	－－－	－－－		－－－	HOL	－Hix	4	II
－－	$\begin{aligned} & \text { mechta } \\ & \mathcal{J M (H) T H S} \end{aligned}$	－－－	－－－	$\begin{aligned} & \text { męLS } \\ & \Psi(H) W S S \end{aligned}$	－－－	®est！	－HTWS	H	OT
－－－	－－－		erclius 	－－－	－－－	QCLL	－Hz\％	W	6
－－－	－－－		$\begin{gathered} \alpha d L \subset \square \\ W X(H) Y O W \end{gathered}$	－－－	－－	adlu	－ H ¢ ${ }^{\text {S }}$	W	8
－－－	－－－	－－－	דMNMTH	－－－	－－－	$4 ¢ 62$	－nmin	W	L
\％．．．	－－－	Lrц （W）XTSO	Lŗca WKISC	－－－	－－－	Lr¢	－TEa	W	9
－－－	eはLLL 	$(W) X(H) \ln$	$\begin{gathered} e l L<a \\ W X(H) Y \mathbb{N} \end{gathered}$	$\begin{aligned} & \text { elLL! } \\ & \mathbb{J (H) Y (W)} \end{aligned}$	eレLレ HyN	せんLロ	－ EHM	W	ζ
		$6 \pi<5 \leq$ （W）ANTZi	Rスくこと回 WNNTZ：	－－－	$\begin{aligned} & \text { KスとEcug } \\ & \text { WXNTZ: } \end{aligned}$	Krcal	$-\mathrm{NI} \bar{Z}_{i}$	W	\dagger
	$\begin{gathered} \text { dexclu } \\ \text { Wh(} \mathrm{U}) \mathrm{x}, \mathrm{NO} \end{gathered}$		denca WX，NO	－－－		く5sc	－ $\mathrm{I}_{1} \mathrm{NO}$	W	ε
－－－	どーしい 	rele （W）रчモ．	relea Wスยฐ：	－－－	$\begin{aligned} & \text { rcLus } \\ & \text { జצধg } \end{aligned}$	rとL	－प्欠¢9	W	2
--	cとしいい テM（H）aIス	$\begin{gathered} 6 L c \\ (W) X a T X \end{gathered}$	çi．ca WXIIT	$\begin{aligned} & c ̧ L L S \\ & W(H) C I X \end{aligned}$	$\begin{aligned} & <\zeta L L \\ & \text { HaIX } \end{aligned}$	$4 ¢$	－\quad IIJ	W	I
	$\frac{\mathrm{uOD}}{\cdot \mathrm{Td} \cdot \mathrm{sqV}}$	－${ }^{-10}$	$\bar{D} \cdot \overline{\operatorname{sav}}$	\bigcirc	$\overline{s \cdot u q^{n}}$		$\frac{s q \bar{t}}{\text { T2pon }}$	$\cdot 5$	

－－－－－－	$\begin{gathered} \text { NEMa } \\ \text { XSN: } \end{gathered}$	N「がロ WIXSN：	－－	－－－	$N \subset \pi-S X_{1}$	H	ट2
	dhanc （N）TiSNO	く1meq口 WRUSHAO	\langle	ณロレ $x 0$ In댄O xo Histio	レตロロ むんRO- ذSNO	N	T己
－－－－－－	Mac （W）工HS	－－－	－－	－－－	M060－WXWS	W	02
－－－	－	－－－	$\begin{aligned} & \text { NLLL } \\ & \Psi(H) M \dot{H} ; \end{aligned}$	－－－		［1］	$6 T$
－＞－－－－	－－	－－－	－－－	－－－	以くく－TGiL	䦽	8 L
－－－－－	－－－	－－－	－－－	－－	ELO－WETN	W	$L \tau$
NさエKレU 	－－－	－－－	－－－	－	Nrer－icizi	I	97
Lそムく Lそムくロ （W）XTVY WXTVY	－－－	－－－	－－－	－－－		王	ST
ひのद66u 山M（山）スTitw	－	－	－－－	－	coccus－山XIWN	A	\＃T
$\begin{array}{r} Q \& 666 山 \\ -\cdots \text { JMX(JM) YTIN } \end{array}$	－－－	－－	－－－	－	QとELU－山MyMT	［	$\varepsilon \tau$
UELC LU山秲HMU	－－－	－－－	－－－	－	LELCLS－Womat	a	己T
－UOD－sqV	－ HO_{5}	－squ	－ nOD	$\overline{\text { squ }}$	－squ		
－Td－ment	－Td	－osend	－suTs	－	Unton［opar	$\overline{9}$	－TII

－－－	いしく， $\mathrm{HN}(\mathrm{H}) \mathrm{XWH}$
－－－	－－－
－－－	－－－
－－－	Lexalu $\mathcal{J} M(\Psi) \Lambda_{1} \mathbb{G H}$
－－－	－－－
	Lのスレレ
	Luerabli
	－－－－－－
	Enca WKSN
	NQLLU －．－ WNHW，

山LrLGe－SHODRZ	N	π
ECGL－HOTM	W	$\varepsilon 7$
aKl KaU－山スiMiS	\pm	己t
NせLレー H\％N」	다	07
NCOLLム－Hyasus	國	6ε
N\＆QLI－HiLna	－	8ε
	A	9ε
	II	$\zeta \mathcal{L}$
HLLEEN－，NJUHH	N	＋
－squ		
W0，TOUON	9	－UI

1LTLLOGO WXSMTDMZ ECGCa
$\mathrm{WX}(\mathrm{H}) \mathrm{dY} \mathrm{M}$ anca
$\operatorname{MAX}(H) S$ $-\infty$
 HLLEELU
 $\overline{\cdot T \mathrm{ToD}} \overline{\text { Td } \cdot \text { saty }}$

Table of Noun Classes

aKLK＿a
$W(\mathrm{~W})$ KiMiS achus
WhX（H）s
 xceanco Nactus空要 xamatu

－．－山MSNA， | $\mathrm{N} \subset \mathrm{Q}$, |
| :---: |
| （N） KWZ |

Description of Classes in Table of Nouns

In. Model Form

1. YID - די

Feminine form characterized by addition of a final Hé ($ה$) to masculine form.
2. GBR - 72ג

Feminine form characterized by addition of a final Taw (π) to masculine form.
3. QNTY SNJ

Masculine plural characterized by addition of a final Mem (\quad).
4. : ZIN - リ

Feminine form characterized by addition to masculine form of Yud Taw (Π^{7}) for singular and Yud Waw Taw (Π ($)$ for plural.
5. MWRH - מרדה

Masculine form, singular, char-
acterized by final (segol) Hé
($\boldsymbol{\pi}$); plural forms, masculine
and feminine, characterized by
dropping of final Hé (π).
6. DGL - Masculine form only; plural
formed by addition of Yud Mem
(ים).

In.	Model Form	
7.	Hemw -	Masculine form only; plural formed by addition of Waw Taw ($\pi 7$)
8.	MQRH - מקרה	Same as number 5, but masculine form only; plural formed by final Yud Mem ($\square^{\text {P }}$).
9.	MKPH - מכִּ	Same as number 8, but plural formed by final Waw Taw ($\pi 7$).
10.	ŠMLi - שמלה	Regular feminine form character- ized by final (Kometz) Hé (\boldsymbol{H}); plural formed by dropping final Hé (1) and adding Waw Taw ($\pi 7$).
11.	HTM -	Regular reminine form characterfzed by final Hé (\boldsymbol{H}); plural formed by dropping final Hée (i) and adding Yud Mem (${ }^{\text {P }}$).
12.	TNWQT - תנד	Feminine form characterized by final taw (π); plural formed by dropping final taw (Π) and substituting Waw Taw (77).

In. Model Form
13. MLKWT - מולכר

Feminine form characterized by final Waw Taw ($\Pi 7$); plural formed by dropping final Waw Taw and substituting Yua Waw Taw ($\Pi 7$))
14. MILYT - מטלית Feminine form characterized by finel Yud Taw (π); plural formed by dropping final Taw (π) and substituting Waw Taw (ת7).
15. RGL -

Feminine without special characteristics; plural formed by final Yud Mem (\quad).
16. '

Same as number. 15; plural formed by final Waw Taw (17).
17. NYMM - Masculine, singular form only.
18. TBL - Feminine, singular form only.
19. 'सुWH - אחרה Feminine with final Hé (i), singular form only.
20. SKMYM - שמים

Masculine, plural form only.

In. Model Form
21. QWST - Regular present participles serving as nominals.
22. 'YŠ - K

Masculine with special plural form.
23. $\quad \begin{array}{ll}\mathrm{M}-\mathrm{K} . \quad \text { Feminine with special plural } \\ \text { form. }\end{array}$
24. 'ŠH - אנU Feminine characterized by final Hé (H$)$, with special plural
form.

26. 'BL - אבל

Parts of speech exclusive of
nouns and verbs
27. RHMN - Feminine form characterized by final Yud Hé (\boldsymbol{N}^{\prime}) or Yud Taw (Ω^{7}); plural formed by final Yud Waw Taw (ת7ク).
28. RŠ: -

Feminine form characterized by either final Hé (7) or Yud Taw (π^{7})

In. Model Form
29. QSTM - קשט
30. HB'Y - הבאי
formed by final Yud Mem (ロ).
31. HGH: ה ה
32. MŠTH - משׂ

Same as number 9, but plural formed by dropping final hé (i) and substituting Alef Waw Taw (תาא).
33.
i. .
34. HWRMN' - Noun ending in Alef (κ), plural formed by dropping the final Alef (N) and substituting Waw Taw (77).

In. Model Form
35. 'YQWNYN - איקרנ Noun ending in Nun (7), plural formed by dropping final Nun (7) and substituting Yud Waw Taw

36. 'YŠYWT - אישי אית Noun ending in Yud Waw Taw ($\pi 7$), plural formed by substituting Yud Waw Taw (YoT) for Yud Waw Taw (YuT) ($\pi \eta \nu$); i.e. singular and plural consonantal form invariant.
38.3 'YMH - אימה Feminine with final Hé (H); plural either formed by dropping final Hé
(C) and substituting Yud Mem (\square) or Waw Taw ($\pi 7$).
39. 'KSDRH - אכטדרה Feminine with final Hé (\quad); plural formed by dropping final Hé and substituting Alef Waw Taw (אר).
3. Number 37 is missing. The order of listing was determined by the development of the process of study rather than in accordance with strict logic.

In．Model Form
40．＇MRH－אמרה
Same as number 39；plural formed by dropping final fé（ \bar{i} ）and substituting either Waw Taw（ 51$)$ or Yud Waw Taw（ $ク$ クク）．

41．$\stackrel{\check{S}}{\mathrm{~S}} \mathrm{H}-\mathrm{H}$
Noun with final（segol）Hé（ N ）； either masculine or feminine； plural formed by dropping final Hé（ B ）and substituting Yud Yud Mem（ロフワ）（masculine）or Yud Waw Taw（ $\overline{\mathrm{I}} \boldsymbol{7}$ ）（feminine）．

42．Š！W！YT－Feminine noun ending in Yud Taw （ Ω^{\prime} ）；plural formed by drcpping the final taw（5）and substitut－ ing Mem（■）．

44．ZWGDWS－ $01727 T$ Same as number 43，but masculine form is not final（segol）Hé（ $ה$ ）．

CHAPIER VI

CIASSIFICATION OF VERBS

The list of verbs was selected from the verb tables of Dr. S. Barkoli. ${ }^{1}$ It was notable to what extent the respective verb collection of Dr . Barkoli and Even Šošan did not coincide. ${ }^{2}$ Though I followed Barkoli's list, I nevertheless found it necessary to add some very common verbs that apparently had been

In general I was able to set up an indexical correspondence between my listing and that of Dr. Barkoli. Much condensing of Dr. Barkoli's list was involved in the process since necessarily Dr. Barkoli's. preoccupation with such elements as vocals and semi-

1. Dr. S. Barkoli, Luah Hap\&olim Hašalém (Complete Verb Tables), Jerusalem, fourteenth edition 1966.
2. We have recorded separately the distinctive verbs from Lamed (7) to Taw (ת) of each collection.
3. Although QNH ($\boldsymbol{\pi}$ IN) is omitted from Barkoli's listing, it is employed by him as a model in the Pa !al construction (非31).
vocals was extraneous to this research which is based on consonants. In certain cases it was necessary to depart radically from Dr. Barkoli's premises for the sake of systematization. To illustrate, Dr. Barkoli treats the radicals ZWG, KWN (77コ, $27 T$) in the conventional manner applicable to Ayin-Waw (7 " \bar{y}) veribs. However, in the Pi!el (${ }^{2}$) construction, for ex. ample, while the Nun (7) of KWN may coalesce with an appropriate suffix, the Gimel ($~(~) ~ o f ~ Z W G ~(\lambda 7 T) ~ w i l l ~$ not be so affected. This disappearance of a radical in one case and its retention in the other will pose a problem for the computer. I therefore considered ZWG (27 J) in the Pi!el construction as an instance of the Šlémim (Uלח), disregarding the standard Ayin-Waw (7"y) form.

A further illustration: Barkoli considers the radicals $Y Z^{\prime}\left(N Y^{\prime}\right)$ and $Q R^{\prime}(N T P)$ identical in kind. ${ }^{4}$ The complication introduced by the Yud (7) in YZ' ($K Y^{J}$) is discussed in a seperate footnote. However, for the purpose and method of our study the presence of an initial Yud (7) in the radical emphasizes an important distinction between both classes of radicals Which we cannot afford to overlook. In contrast, be-
4. Barkoli, op. cit. p. 72.
cause of the consonantal emphasis given to our method of operation, the radical distinction in vocalization in such forms as the infinitive, e.g. LaZét (לצאת), LaSever (לשבת) is of no concern.

Similarly, Dr. Barkoli does not differentiate between such radicals as NS' (These are placed into an identical class despite the regular Hitpa!el (on one hand, and the transposition of the Taw (Ω) in the Hitpa!el or SM' (Oמא) on the other. The same is strikingly illustrated in the case of Barkoli's classification of SLH (S_{M}). Although it is correct to assign this radical equally to the Lamed Het $\left(\Pi^{\prime \prime}\right)$ class of YKH (חכ), the marked morphological change (the change of the Yud- , to Waw- 7) in the Hitpa!el of the latter is, nevertheless, thereby entirely obscured.

Thus while on the one hand, it was possible in general to condense much of Dr. Barkoli's listing, on the other hand, there also had to be considerable amplification of his list, since many of the aspects of Dr. Barkoli's systematization brought about the disappearance of relevant consonantal structure, as herein shown.

In brief, while basing the study solidy on Barkoli's system, the special circunstances of the problem necessitated a departure in three ways generally: the equating of different, distinct classes derined by Barikoli; reclassification based on Barkoli's Pootnotes; analysis of individual classes defined by Barkoli into multiple classes and into the unclassified.

This threefold procedure induced the organization of the verb lists:

L 1. Indexical correspondence of Source (Barkoli) and Project

工 2. Reclassifications
I.3. Special classes and unclassifiied

The Present Participle

In case of present participles which are traditionally written plena, I have considered as legitimate the defective spelling as well, since this would embrace the characteristics of certain types or literature. This type of present participle, therefore, has been placed into one class, while those so vocalized as not to permit a Waw are placed into another. This too, is a departure from Barkoli's system. Orthography of Verbs

In the matter of orthography of verbs, the scriptia
plena and defectiva were given equal consideration in planning the programming, eeg. the imperfect of Pa! al
 in Pixel ((Rus? (quaSar) ()

The Passive Participle
With reference to the mechanics of the computer, consideration of the distinction between transitive and intransitive verbs was a factor of great importance. The passive participle form was functionally automatically included with each transitive verb. This is justified by the grammatical significance of the transitive, namely, that the recipient of an action is the potential subject of the intransitive form of the verb designating the action. The same could not be said for intransitive verbs, in which case, special adjustments were required.

The above considerations permitted considerable economy in the matter of devising of necessary listings touching upon the passive participles. The mere indication of the transitive, suffices, as respects the computer, for enjoining computations relevant to inclusion of the passive participle form.

Intransitives that Govern an Accusative ${ }^{5}$

1. 'DM -	-
2. 'RK -	אר7
3. HGN -	הג7
4. HLS	חלש
5. FMR -	7 7
6. HŠK -	7π
7. KBH -	כבה
8. MTN -	מתך
9. MTQ -	מתקי
10. ! ${ }^{\text {GM - }}$	עגם
	บา
12. ${ }^{\text {Z }}$ M -	עצם
13. ZFF -	ワワ
14. ZRD -	צר7
15. RDM -	רים
16. RHN -	רחד
17. RQB -	רקב
18. TĚŠ -	UUTH

5. This list is based exclusively on Barkoli's Luah Happe!olim.

Source	Project	Source	Project
1	---1	22--	----7
2---	--1	23--	---8
3-----	---1	24--	----8
4---	--1	25--	---9
5-----		26--	---1.
6-----	---1	27--	----1
7-----	--1	28--	----2
8---	---1	29-	--1
9-----	---3	30-	---9
10---	--2	31--	---10
11.	--2	32--	---10
12--	--4	33--	---10
13----	---1	34---	---10
14-	---2	35--	---10
15--	-1	36---	---10
16----	---1	37---	---11
17----	---1	38---	---12
18----	---2	39---	---13
19----	---5	40---	---12
20----	---5	41---	---12
21----	--6	42---	---12

(LI) Indexical Correspondence of Source and Project Construction Alef (continued)--Pa!al-- פעל (א)

Source	Project	Source	Project
43--	---14	55---	--20
44--	--14	56--	--20
45---	--14	57--	-13
46--	--15	58--	--23
47---	--15	59--	--24
48---	--16	60--	--9
49--	--17	61--	--21
50---	--17	62--	--10
51----	--18	63--	--10
52---	--19	64---	--15
53----	--19	65--	--15
54---	--20	66---	--22

(LII) Indexical Correspondence of Source and Project Construction Bet -- Nif!al--
Source Project Source Project

5-----n-----------1
6-----------------1
7-----------------18-----------------1
9----------------1

11----------------112---------------2
13----------------2
14----------------2
25----------------3
16---------------3
17-0-------------1 -1
18----------------1
19
20 -4
21- -4
22 -4
23----------------4
$24-$ -4
25 -5
26---------------6
27 -6
28 -7
29 -7
30---------------- 8
31----------------9
32 10
33 -10
34 11
35 11
36 -12
37 13

Source	Project	Source	Project
1---	----1	15--	---3
2---	----1	16-	----3
3---	---1	17	-----4
4---	---1	18-	----4
5---	---1	19-	----5
6---	---1	20-	----5
7----	--1	21	----6
8----	---1	22	---3
9--	---1	23-	----7
10--	---1	24	----1
11----	---1	25-	----8
12---	--1	26--	----8
13-	---2	27--	----8
14----	---2	28--	----9

(II) Indexical Correspondence of Source and Project Construction Dalet -- Pu!al-- פר -- (7)

Source	Project	Source	Project
1-----	--1	16---	----2
2--	---1	17---	---2
3-----	--1	18--	----3
4-----	---1	19--	----3
5-----	--1	20--	----4
6-----	--1	21-	---4
7-----	---1	22--	----5
8-----	---1	23--	$\therefore-3$
9----	--1	24--	---6
10----	---1	25--	----7
11----	---1	26---	----1
12----	---1	27---	----8
13---	---1	28--	----8
14----	---1	29-1	----8
15---	---1	30---	----9

Construction Waw--Hif!il--		(7)--(7)	
Source	Project	Source	Project
1---	--1	21-------------	---6
2--	--1	22------------	---7
3---		23-----------	----8
4---		24-----------	----8
5---	--1	25------------	----9
6---	--1	26-----------	----9
7---		27-----------	---10
8---		28-------------	---11
9--	--2	29------------	---10
10-1	---2	30-----------	---11
11--	--1	31------------	---11
12--	---3	32----------	---12
13	-4	33-----------	---13
14--	--4	34----------	---11
15--	---1	35----------	---14
16--	---1	36-------------	---14
17---	---1	37------------	---15
18--	---5	38------------	---14
19---	---5	39-----------	---14
20---	---5	40----------	----1

(LI) Indexical Correspondence of Source and Project Construction Zayin--Hof!al-- הער

Source	Project	Source	Project
1-----	---1	15---	----1
2-----	---1	16--	---5
3-----	---1	17--	----5
4---	---1	18-	---6
5-----	---1	19--	----7
6-----	--1	20-2	---8
7-----	--1	21--	---9
8--	---2	22--	---10
9-----	--2	23--	---9
10----	---3	24--	---10
11---	---4	25---	---11
12----	---4	26---	---12
13----	---1	27---	---12
14----	---1	28--	----1

Description of Classes (Il) --Project Classification
Construction Alef -- Pa!al--

In. Conj. Model

1. \quad SMR - $70 \cup$
(Regular)
Slémim (UCOB)
2. \quad DBK -
(Regular)
Slémim (שלמים) but participle has no Waw (7).
3. 'MZ - (Regular)

Šlémim (has no Yud (\quad).
4. \quad KL - K Pé Alef ($\mathrm{K}^{\prime \prime}$)

The Yud ($>$) is dropped in the perfect and imperative; infinitive may retain Yud (ביע) or occur in the !LeT form (SBT-- עבת).
6. $Y Z Q$ - Same as number 5 but the imperative may drop or retain the Yud (5).
7. NPL - 3פל

Pé Nun (3 "פ)
Nun (3) is dropped only in the imperfect.

Description of Classes（IL）－－Project Classification Construction Alef－－Pa！al－－ $3 \boldsymbol{Y}$ In．Conj．Model
8．NSQ－PWI

Same as number 7，but the Nun（3）
is also dropped in the imperative．

9．NPH－กลコ
Same as number 8，but the infini－ tive is in the ！IT and ！L forms；

10．$Q N H$－TIJP
Lamed Hé（ \boldsymbol{H}^{\prime} ク ）

14．KRT－$\Pi 7 \beth$ ．Lamed－Taw $\left(\Pi^{\prime \prime} 7\right)$

15．QWM－■7p ！Ayin－Waw（7＂צ）

16．IWN－ 777 ！Ayin－Waw Lamed－Nun $(7 " ク-7 " 3)$

17．SYM－\quad UTV Iyin－Yud (\boldsymbol{y})
18．DYN－アフ7 ！Ayin－Yud Iamed－Nun（7＂クーーブリ）

19．HGGG－2גח ：Ayin－：Ayin（y＂y）

Descrintion of Classes（FI）－－Project Classification
Construction Alef--pa!a].--

In．Conj．Model
20．QBB－
But the participle assunes the
Ayin－Waw（7＂y）form．

21.	NIN－ 733	
22.	MNT－מר	

23．YGR－7ス Pe－Yud（ブロ）
Has ：Ayin－Yuã（ 0 ＂y ）character－ istics．

In.	Construction Bet-Nif!al-- Yyej--(2)	
	Conj. Model	
1.	SMR - ${ }^{\text {c }}$	(Regular)
2.	YSD - 707	Pe-Yud (${ }^{\text {P }}$ (5)
3.	NGF - 923	Pé-Mun (${ }^{\text {" }}$)
4.	GLH - גלה	
5.	NTH - HO	
6.	? 1 Miv - 730	Lamed-Nun (${ }^{\text {(}}$ ()
7.	KRT - 57 J	Lamed-Taw ($\mathrm{n}^{\prime \prime}$ ל)
8.	SWG - 270	!Ayin-Waw (7 (ע)
$9 \cdot$	BYN - ${ }^{\text {P }}$! Ayin-Yud (${ }^{\text {(}} \mathrm{y}$)
10.	ZND - 779	!Ayin-Waw (7"У)
		But periect assumes Šlémim form.
11.	SBB - 0	!Ayin- Myin (${ }^{(Y \prime V)}$
12.	BZZ - iiz	
		With Waw (7) in the imperfect.
13.		!Ayin-tAyin (U" $^{(Y)}$
		Without Waw in perfect.

Descrintion of Classes（LI）－－Project Classirication

Construction Ginel-Pi!el--

In．Con，j．Model

1	DBR－ 727	

2．ZWN－Lameã－Hé（ה＂ל）

3．SKN－ 700 Lamed－Nu．$(7$＂ 7 ）
4．＇MI－万Di K Lamed－Taw（ラ＂ל ）

7．SBB－220 ！Ayin－！Ayin（y＂y）

9．\quad ：NYN－ \boldsymbol{T} リ \quad Quadriliteral final radical Nun （ ）（ ）

In.	Construction Dalet-Pualal- לyle--(I)	
	Conj. Model	
1.	KBD - 72	
2.	ZNH - ก7	
3.	SKN - 720	Ismac-inun ($\square^{\prime \prime}$)
4.	ZMT- 5DE	Lamed-Taw (" $^{\text {" }}$ \% $)$
5.		$\begin{aligned} & \text { !Ayin-Waw }\left(7^{\prime \prime} y\right) \\ & \text { Polal form. } \end{aligned}$
6.		:Ayin-Waw (7"y) Pu:al form, the Waw (7) changes to Yud ($)$).
7.	:L:L - לעל	Quadriliteral of the F oliaL form.
8.	GLGL -	Quadriliteral of the Puteai form.
9.	:MYN - ¢	$\begin{aligned} & \text { Quadriliteral of Lamed-Nun } \\ & \left.\left(\boldsymbol{T}^{\prime \prime}\right\rangle \quad \text {) }\right) \end{aligned}$

Description of Classes（Ll）－－Project Classification

Construction Hé－－Hitpa！el－－＿
In．Conj．Model
1．KSR－（Regular）Šlémim（

2.	YKH－חכ＇	Pé－Yud（ $\mathrm{O}^{(2 \mathrm{~g}}$ ）
3.	ZQF－IPT	Pé－Zayin（ ＂$_{\text {＂}}$ ）
4.	ZDQ－PTS	Pé－Zadi（ 土＂5）$^{\text {（ }}$
5.	SDR－ 770	

6	DBQ－	Pé－Dalet（ 7 （\％）

7．GLH－Lamed－Hé（
8．$\quad \mathrm{MN}-\mathrm{IDN} \quad$ Lamed－Nun（7＂$)$

9．＇MT－K K Lamed－Taw（ ת＂$^{\prime \prime}$ ）
10． $\begin{aligned} & \text { QWM }- \text { ק } \\ & \text {（QWMM）}\end{aligned}$
11．BYN－アフユ
！Ayin－Waw（7＂У）
！Ayin－Yud（ \quad＂リ）
12．QWM－םาp
！Ayin－Waw（7＂У）
13．GLL－גלל ！Ayin－！Ayin $\left(Y^{\prime \prime}\right.$ リ）
14．PRNS－ 037

15．GLGL－גלג

16．ZMZM－צ צ
17．SLSL－סלסל

18．DLDL－דלדל

19．

Regular Quadriliteral
（ $\begin{gathered}\text { Regular Quadriliteral } \\ \text {（ } \\ \text {（ } \\ \text {（ }\end{gathered}$
Quadriliteral of Pé－Zayin
（i＂$)$
Quadriliteral of Pé－Zadi

Quadriliteral of Pé－Samah or Sin
（ 4 or 0 ＂\square ）
Quadriliteral of Pé－Dalet

Description of Classes (I.1)--Project Classification

In. Conj. Model

1. QZR - (Regular) Šlémim (UY)
2. \quad YRD - 77

Pé-Yud (2 " 2)
3. YZB - ${ }^{7}$

Pé-Yud (2 " 5)
No transmutation of Waw (1 ;
Yud ($>$) dropped.

Pé-Nun ($\mathrm{J}^{\prime \prime}$)
Lamed-Hé (ה)

Pé-Nun Lamed-Hé (
Lamed-Nun (${ }^{7}$ "
Lamed-Taw (I $^{\prime \prime}$)
! Ayin-Waw ((ע)
But perfect may also assume Hapiloti
form (הפעילֹת)
11. PWR - 77 ! Ayin-Haw (7"У)

Héf!alti form (הפעלתי).
12. BYN - クフ
13. MWT -
14. SBB - סב
15.

TLL - תלל

!Ayin-!Ayin ($(y$ " $)$
May also assume the Haf:iloti
(הפעילרתי) form.
!Ayin-!Ayin of He̛f!alti (

Description of Classes（LI）－－Project Classification Construction Zayin－－Hof！al－－ 3 － 2 （

In．Conj．Model

1.	QZR－7XT	（Regular）Šlémim（ ${ }_{\text {（ }}^{\text {（ }}$ ）
2.	YRD－770	Pé－Yud（ \quad＂$)^{\text {）}}$
3.	YZB－$\underline{Z V}^{\prime}$	Pé－Yud（ ${ }^{\text {（ }}$（5）

Pé－Nun（3＂Ø）
5．GLH－הi
Lamed－Hé（ $\Pi^{\prime \prime}$ 7）

7．$\quad Z M N-\quad$ TDT
Iamed－Nun（7＂ク）
8．SHT－תחП
Lamed－Taw（ $\Pi^{\prime \prime \prime}$ ）
9．QWM－ロ ק
！Ayin－Waw（7＂y）
10．BYN－クフワ
！Ayin－Yud（ 5 ＂$\%$ ）
11．MWT－ת7ワ
12．\quad HIT－
SAyin－Waw Lamed－Taw（ $\pi^{\prime \prime}$ ク－－7＂y ）
Ayin－！Ayin（ $y^{\prime \prime} y^{\prime}$ ）

Construction Alef--Pa!al-- --(N)			
1.	DBQ -	7בק	Also conjugation number 1.
2.	HigR -	חבר	Withdrawn from conj, number 2.
3.	min -	חנב	Withdrawn from conj, number 2.
4.	HNF -	ワ 7	Withdrawn from conj. number 2.
5.	HRZ -	חרץ	Withdrawn from conj. number 2.
6.	HִŠK -	חשך	Also conjugation number 1.
7.	Y'B -	יאב	Reclassified to conj. number 1.
8.	YFR -	יה7	Also conjugation number 3.
g.	YZ ${ }^{\prime}$ -	יצא	Reclassified to conj. number 5.
10.	YZQ -	יצק	Also conjugation number 5.
11.	YZR	יצ7	Also conj. number 1
12.	YQD -	יקד	Also conjugation number 1.
13.	YQR-	יקר	Also conjugation number 2.
14.	YSM -	יעם	Also conjugation number 1.
15.	YŠN -	יש7	Reclassified to conj, number 13.
16.	NDH: -	נדח	Reclassified to conj. number 7 .
17.	N!! -	yט	Reclassified to conj. number 7 and 9.
18.	! IL -	עלז	Reclassified to conj. number 2 and 3.
19.	! RB -	ערב	Reclassified to conj. number 1 and 2.
20.	ŠD -	76\%	Reclassified to conj. number 1 and 19.
21.	ŠMH -	שמח	Reclassified to conj. number 1.

(L2) Reclassification
Construction Gimel--Pi!el-- $2 \boldsymbol{Y} \boldsymbol{y}$ פ-(2)

1. $2 W G-27 T$ Reclassified to conj. number 1.
2. GNN - 132 Reclassified to conj. number 3.

(L2) Reclassification
 Construction He--Hitpa!el-- (1) (1) -- התפעל

(Reclassification based on changes governed by the first radicals $T, T, Z, Z, S, S: W, \mathcal{O}, \Psi, \cup, \Pi$)

1. DBQ*- דבק
2.
3. $\quad \mathrm{ZRH}-\quad \pi$
4. ZQQ - PDT
5. ZB! - צ צ
6. $\quad \underline{W} H-\quad$ צ
7. ZHQ - צ צ
8. ZL: - צלע
9. \quad ZMH -
10. ZNNH -
11. , ZNT! - צJ
12. $Z: F-\quad$ Y
13. $2: R-\quad$ -
14. \quad ZRB -
15. ZR! - צרע
16. $\quad \underline{R} R H$ -
17. S'B - סאב
18. SBB -
19. SHB - סחב
20. SḤF - סחף

Reclassified to conj. number 1.
Reclassified to conj. number 1.
Reclassified to conj. number 3.
Reclassified to conj. number $3 \cdot$
Reclassified to conj. number 4. Reclassified to conj. number 4.

Reclassified to conj. number 4. Reclassifieà to conj. number 5. Reclassified to conj. number 5. Reclassified to conj. number 5.

Reclassified to conj. number 5.

[^2]| Construction He--Hitpa!el-- | | | |
| :---: | :---: | :---: | :---: |
| 21. | SY:- | סיע | Reclassified to conj. number 5. |
| 22. | SLH - | סלח | Reclassified to conj, number 5. |
| 23. | SM' - | סמא | Reclassified to conj. number 5. |
| 24. | S!D - | סע7 | Reclassified to conj. number 5. |
| 25. | S:F- | סעף | Reclassified to conj. number 5. |
| 26. | S!R - | סע7 | Reclassified to conj. number 5. |
| 27. | SPH - | \% 10 | Reclassified to conj. number 5. |
| 28. | SRH - | סדח | Reclassified to conj. number 5. |
| 29. | S'B - | שאב | Reclassified to conj. number 5. |
| 30. | S'G- | Uאר | Reclassified to conj. number 5. |
| 31. | S'F- | שת | Reclassified to conj. number 5. |
| 32. | S'R - | שאר | Reclassified to conj. number 5. |
| 33. | SBH - | שבח | Reclassified to conj. number 5. |
| 34. | (1) SB! - | שבע | Reclassified to conj. number 5. |
| 35. | (2) SB: - | שבע | Reclassified to conj. number 5. |
| 36. | SHQ - | שוהק | Reclassified to conj. number 5. |
| 37. | Sw! - | ש7 | Reclassified to conj. number 5. |
| 38. | SIIZ - | Tח | Reclassified to conj. number 5. |
| 39. | SHL - | שחל | Reclassified to conj. number 5. |
| 40. | SHM - | שחחם | Reclassified to conj. number 5. |
| 41. | SHF - | עחף | Reclassified to conj. number 5. |
| 42. | SHE- | שחץ | Reclassified to conj. number 5. |
| 43. | SHQ - | שחק | Reclassified to conj. number 5. |

Construction He--Hitpa!el-- לעפmin --(it) continued			
44.	SHR -	שחר	Reclassified to conj. number 5.
45.	SHD -	שחד	Reclassified to conj. number 5.
46.	STH -	שטח	Reclassified to conj. number 5.
47.	SYK -	שיך	Reclassified to conj. number 5.
48.	SYF -	ワワ	Reclassified to conj. number 5.
49.	SYR -	שיף	Reclassified to conj. number 5.
50.	SKH -	שכח	Reclassified to conj. number 5.
51.	SLIH -	שלח	Reclassified to conj. number 5.
52.	SN' -	NJ	Reclassified to conj. number 5.
53.	SM! -	Y\%	Reclassified to conj. number 5.
54.	SS: -	עסU	Reclassified to conj. number 5.
55.	S! $\mathrm{I}_{\text {- }}$	שֶעל	Reclassified to conj. number 5.
56.	S!R -	שער	Reclassified to conj. number 5.
57.	SP: -	שפע	Reclassified to conj. number 5.
58.	SQ: -	שקי	Reclassified to conj. number 5.
59.	TM' -	טמא	Reclassified to conj. number 6.
60.	DK' -	דכא	Reclassified to conj. number 6 .
61.	TM : -	טמע	Reclassified to conj. number 6.
62.	TRF -	טר7	Reclassified to conj. number 6.
63.	KFR	ว	Reclessified to conj. number 6.
64.	N'ㅡㅡ -	YNJ	Reclassified to conj. number 6.
65.	NSS' -	NuT	Reclassified to conj. number 6.
66.	TRZ -	תרץ	Reclassified to conj. number 6.
67.	SFRD -	ספד7	Reclassified to conj. number 17.
68.	$T!T$! -	עתעת	Reclassified to conj. number 18.

$$
-94-
$$

(L2) Reclassification

Construction Waw-Hiflif--הכעל -(1)

1. YLK - \quad - Reclassified to conj. number 2.
2. YZ' - Reclassified to conj. number 2.
3. NW' - N13

Also as conj. number 10. (הקימותי)
(I2) Reclassification

Construction Zayin--Hof!al--_--(I)

1. YZ' - Reclassified to conj. number 2.
2. NIQ - קתIJ

Also as conj. number 1 (i.e. retaining the Nun (J)).

	Construction Alef--Pa!al--	
In.	Conj. Model	
25.	Y'H -	Same as number 10 ($2 \mathrm{NH}-\mathrm{C}$ - H ק) but participle lacks Waw (7).
26.	YLK - יך	Same as number 5 (YSB-- 2) but has neither perfect nor participle forms.
27.	YZT-	Same as number 6 (YZQ--קY)) but the perfect drops Taw (π) as in number 14 (KRT-- כרח).
28.	YRS -	Same as number 1 (SMR--שמך), but infinitive and imperative as in number 5 (YSB-- \quad).
29.	YRI - ירט	Same as number 1 (SMR--" Uמש), but also number 5 (YSB-בשי) except for imperative.
30.	NST - ת	Imperfect also ${ }^{7}$ preserves the Nun (3) while dropping the Taw (5 as in number 14 (KRT-- כרה).
31.	HGN - הגן	Present and passive participles only.

1. "Also," i.e. in addition to the corresponding regular conjugation noted in List 1 (Ll).

1A. This list is indexed as a continuation of list 1.
(L3) Special Classes and Unclassified
Construction Alef--Pa!al-- (x) continued
In. Conj. Model
32.

Same as number 1, but without
imperative.
33. ZQQ--
'RR-- אר7
34. HYT - חיח
35. Т ט - טחН -
36. :WT - ערת
37. NST - DOJ
39. ${ }^{1}$:ST -
40. HWH - הרה
41. PSS - OOD
42. $\quad Z R K-77 Y$
with prepositional Lamed (L!WT--תר לע)
Participle only NWSS (0073).

Same as number 14, but participle
as in number 43.
Same as number 10, but infinitive is HWH (הר (הר) and also HWY (הו).

Also as number 35 (IHH-- \quad חกil).
Participle also ZRYK (צ צ) etc.
43. The anomalous passive participles of the intransitives.

1. Number 38 is missing.

(L3) Special Classes and Unclassified
Construction Gimel-Pi!el--לyיפ --(ג)
In. Conj. Modei
2. \quad :WN -

LWN - ל7
Same as number 5, but Nun
(J) coalesces with suifixical

Nun (3).

11. MNT - $\pi 7$

ZNT - ת7צ
Same as number 5, but Taw (Ω)
becomes coalesced with sufæix-
ical Taw (π).
12. SFTT -

Quadriliteral, final Taw (5)
coalesces with suffixical taw (π).
(L3) Special Classes and Unclassified
Construction Dalet--Pu!al---
In. Conj. Model
10. SFTT - \quad M
becomes coalesced with suffix-
ical Taw (π).

(L3) Special Classes and Unclassified

Construction He-Hitpa!el--_--(그)
(Special classification based on changes governed by nature of first radical; namely $\mathrm{Z}, \mathrm{S}, \mathrm{S}, \underline{\mathrm{Z}}, \mathrm{D}, \mathrm{T}, \mathrm{T}--$

$$
\therefore, \cup, 7,3, \mathbb{B}, 0,7)
$$

In. Conj. Model
20. DDH - Same as number 7 (GLH- גלה) but the Taw (π) of the prefix醇 (57) may also coalesce.
21. . DYT - ת77

Same as number 9 but the New (π) of the prefix 巩 (H) becomes coalesced.
22. DSN - $7 ש T$
23. zKH - זכה

Same as number 6, but the Nun
(3) coalesces with the suffixical Nun (J).

Same as number 7, but the Tew (π) is mutated to a Dalet (7) and transposed.

Same as number 8 but the Taw (π) behaves as in number 23 .
25. ZivL -

Same as number 10 but the Taw (π) behaves as in number 23 .

(L3) Special Classes and Unclassified

Construction He-Hitpa!el-- \qquad --(고)

In. Conj. Model
26. SWD - 7

SWF - 7
SNB - 27
K⿹\zh26灬NH -
SूWF - 7
ŠWQ -
27. TBN - \quad T 72π
28.

ZDD - $77 צ$
$\underline{Z} F F-75 צ$
29. ZNT - צ צ

ZMT - צמת
30. $\quad 2 \mathrm{HH}-\mathrm{M}$ ZFH -
31.

Same as in number 10, but the Taw (π) is transposed.

Same as in number 8, but the Taw (π) coslesces.

Same as number 26 , but the Taw (Π) is mutated to a Tet ($\cup)$ and is transposed. Same as in number 9 ('MI -אמת) but the Taw (π) behaves as in number 28.

Same as in number 7, but the Taw (π) behaves as in number 4.

Same as in number 7, but the Taw (π) behaves as in number 5 .
(L3) Special Classes and Unclassified
Construction He-Hitpa!el--לyanin_-(I)

In. Conj. Model
32.

Same as in number 31 , except with the addition of a Waw
(7) before the final radical position.

Same as in number 8 ('MN - אמן)
but the Taw (5) behaves as in number 5.

Same as in number 33, but also as number 11.

Same as in number 10 (QWM ם) but the Taw (5) behaves as in number 5.
36.

Same as in number 4 (ZDQ - PTY)
but the radical is quadriliteral.
(L3) Special Classes and Unclassified
Construction He-Hitna!el-- התפעל - (in)

In. Conj. Model
37. SQRN - סקר STRTN - סרטן Śning - שאת SKYN - ש7

Same as number 19 (:NYN -
($\boldsymbol{ア} \boldsymbol{ク}$
is quadriliteral.
38. T! T! -

Same as in number 6, but the radical is quadriliteral.
(L3) Special Classes and Unclassified
Construction Wew - Hif!il-- ה--(1)

In. Conj. Model
16.

Same as in number 10 (QuM ק) but the Nun (3)
coalesces with the suffixal Nun (I); also as number 11 , but the Nun coalesces as above.
17. YZT - \quad SY

Same as in number 12, but the Taw (5) coalesces with the suffixal Taw (Π).
18. KIT -

Same as in number 15 (TLL -
(תלל) but also the Taw of the second radical coalesces with the suffixal taw (B) leaving only a monoliteral stem.
(L3) Special Classes and Unclassified
Construction Zayin--Hof!al---3y

In. Conj. Model
13. YZT - ת

Same as in number 3, but the
Taw (π) becomes coalesced
with the surfixical Taw (π).
14. NTN - $7 \pi 3$

Same as in number 4, but in
imperfect only.
15. LQE - לקח

Same as in number 1 , but the first radical coalesces.

Comments

Because of shortcomings in the basic research material, which we felt obliged to utilize, error was unavoidable. Nevertheless, because of greater efficiency for conducting the studies which the scholar has been thus endowed as a result of our investigation, we are confident that these shortcomings and consequent errors will be eliminated individually, as the case may demand. Naturallys with continued utilization of our studies, error will be completely d\&faced for all practical purposes.

Lack of means has compelled postponement of continuation of the research in respect to a number or important and highly relevant problems. An example of this is afforded by certein ommissions that have been made in matters that have bearing on verb classification. In general, these matters are of the nature of generalizations that are relatively of wider universal relationship in the field of verb classification. For example, the jussive (apocapated imperfect) has not been discussed here. We look forward to the integration of these and similar matters into the future programming of the computer.

Comments

Because of shortcomings in the basic research material, which we felt obliged to utilize, error was unavoidable. Nevertheless, because of greater efficiency for conducting the studies which the scholar has been thus endowed as a result of our investigation, we are confident that these shortcomings and consequent errors will be eliminated individually, as the case may demand. Naturallys with continued utilization of our studies, error will be completely d\&faced for all practical purposes.

Lack of means has compelled postponement of continuation of the research in respect to a number or important and highly relevant problems. An example of this is afforded by certain ommissions that have been made in matters that have bearing on verb classification. In general, these matters are of the nature of generalizations that are relatively of wider universal relationship in the field of verb classification. For example, the jussive (apocapated imperfect) has not been discussed here. .We look forward to the integration of these and similar matters into the future programming of the computer.

VI Results and Discussion

Results:

The computer technique employed in the research consistently identified stems of the test-words. These stems invariably were validated by objective cri.teria. Though the research is at present not entirely completed, optimism as to the character of further rem sults is, therefore, justified.

Discussion:

The results of the research very evidently indicate that the computer can take over the human function of identifying stems of the language with equal and even greater accuracy, but with incalculably greater speed. Semantic difficulties, however, remain in which the machine cannot compete with the human operator. But the one gain alone -- the tremendous speed with which the computer carries out its assignment -- is a priceless one, and will now make feasible such projects as compiling of concordances, indices, special dictionaries, classified lists of data, and other scholarly and pedagogic works.

Nevertheless, there still remains a serious problem of increasing the efficiency of the computer technique through reduction and streamlining of the many sub-operations"involved in the technique.

There is also envisioned beneficial modification and expansion of the correlation tables in keeping with the provenanced of additional data characterized by special problems. For example, no distinction has
been drawn between imperfect and imperative in the usage of cohortative hé.

Though the present tables are adequate and quite satisfactory for our purpose, it may be adviséable to broaden their application for such projects as translation inquiries. In case of our example, this would require a redivision of the data involved into two separate rows, one corresponding to the imperfect, the other, to the imperative.

VII CONCLUSIONS

General Value:
It can be stated with confidence that the special method of research which we have undertaken, though as yet incomplete, already represents a most valuable technique for future studies in this and and related fields. Hitherto, application of computer techniques to language research, in general, and to studies in Hebrew, in particular, have been of a rather routine or statistical character. The research described in this report, it is to be hoped, can justifiably be termed a pioneer step insofar as it has pointed out the way wherein computer studies in this field may truly be invested with the ability of scholarly progress. This has been done by translating the need for encyclopedic consultation in analytic studies of Hebrew words into the routine, mechanical technique afforded by design of an appropriate rationale and scheme for computer operation, which effectively translates the need for encyclopedic consultation in this field to the routine, simpler way of the computer. In brief, our research should make preparation and availability of technical works in the field of linguistics a routine, relatively speedy task. This, in itself, will have a double value. On the one hand, it will furnish the researcher with sufficient and needy material to carry out research on his own special problem; and on the other hand, it will provide the scholar much more leisure so essential for the functioning of the creative imagination basic for advance in all fields of learning.

Specific Application - A New Pedagogic Approach: In addition, our special research already indicates valuable and immediate application to the field of pedGgogics of language and new insights in the understanding of the basic laws of the Hebrew tongue itself.

We permit ourselves an additional passing comment at this point in relation to an outstanding example of application of the results of our research to the teaching of Hebrew. To reiterate, our study has essentially emphasized to an unusual degree the morphologic aspect of Hebrew grammar. The observations that have come to light in the course of our research have pointed out and confirmed that the role played by vocalization and the rules governing vocalization are in reality of minimal importance from the point of view of transmitting insight and broader understanding of the mechanics and structure of the Hebrew language.

In truth, what has become apparent is that by basing studies of the language on the experience gained through our research, an overall perspective is afforded which will silhouette more clearly the inter-relations and inter-connections of the Hebrew language. It is very evident, therefore, that pioneering worli in this direction is definitely indicated, certainly, for institutions of higher learning.

VIII. Summary:

The purpose of the study was the construction of an algorithm for stem recognition in the llebrew languagg. The liebrew word was conceived as a consonantal, morphologic unit, and this concept governed the more detailed planning of the research. Thu; vowe 1 changes were not considered. Central to the entire research were tables and listings organized on a grammatical basis and so devised as to present certain pertinent correlations"between verbals and nominals and theaffixal elements.

36 grammatical categories were set up: constructions, modes, tenses, person, number, gender, accusative pronominals for verbs, construct state, person, number gender for nouns. Four types of affixes were correlated with these categories. The four types were: auxiliary elements, prefixes, suffixes, accusative pronominals.

A seauence of programs was written for the computer. First, it was enabled to fractionate a test word on the basis of the prepared lists, thus separating the verb or noun stem from the affixes. . Empirical rules were then formulated for the purpose of assisting the computer in arriving
more accurately at the gramatically correct combination. Utilizing tine tables, the computer checked further the various combinations of stem and affix for grammatical legitimacy. Lach fractionation of a given tested word which has been identified as one of the affixes listed was clecked against the 36 columns of grammatical categories.

In order to further check the validity of the residue combinations, the final products of the computer operation, it became necessary to check the associated stems. For this purpose, a special reference dictionary is now being compiled. The dictinnary is divided into two.sections-the verbal and nouns. Each entry of the noun section is especially indexed. The index number identifies for the computer the table which indicates the different mutations of which the entry is capable. In addition, the dictionary contains 12 more features.of other pertinent information as well. The verbs have been compiled in separate tables. The entries are indexed and analogously, as in case of the nouns, the computer is thus enabled to obtain full information on the tested verb. At times the tested residue will be reported as noun or verb; at times, as noun and verb. The latter is morphologically possible.

The research here sumarized though incomplete, has simplified the academic problems involved in the field of investagation of Hebrew words, and has reduced their solution to routine, mechanical terms. perhaps most spectacular isthe apriication of the . results of our investigation to the field of teaching. Traditionally the magnitude of attention paid to the aspect of vocalization of Hehrew grammar has been very great. Our studies however indicate that this measure of preoccupation with vocalization has been unduly extensive. The system of Hebrew language instructions oriented in morphology, as marked out in this report, will not only ease the labor of the students, but will also convey a much more significant and valuable understanding of the structure and dynamics of the language.

X. REPERENCLS

Related Reseurch:

1. Ben-Clfaim, Z'ev (ぬ Associates), "Megilat Ahimalaz", Jerusalem, The Academy of the at Hebrew Language and Mosad Beyalik, 1965.
2. Ben-llayim, Z'ev, and Zarfati, (Gad Ben-Ani,
"Dugma'ot Leqonqordanzya Sel Berayta
Demlehet Hammiskan", Jerusalem, 1961.
3. Cheouka, Yaalrnv, "Nituah Diqduqi Be!ezrat Haminehasev", Conference Proceedings, Rehovot, The Weitzman Institute, 1966
4. McDaniel, J., and Whelan, S., "The Grammatical Interpretation of Russian Inflected Forms Using a Stem Dictionary", Proceedings of the 1961 International Conference on "Machine Translation and Applied Language Analysis', Nutional Physical Laboratory, Tedrlington, England.
5. Sapiro, N. and Lhenuka; Y., "Nituah Mekanografi Sel lfamorfologiay Ha!ivrit", Lesonenu, Vo1. 27-28, Je rusalem, 1964
6. Tasman, r., Indexing the Dead Sea Scrolls by Blectrónic Literary Data Processing Methods, IBM, New York, 1958.

Source Material:
Barkoli, Dr. S., Luall Happe!o1im HaSalem, Jerusalem, 1967.

Even Sosan, Milon Hahadas, Jerusalem, 1967, Vols. 1-3.

Even Sosan, Milon Maharlas, Jerusalem, 1962, Vols. 1-5.

Har-Zahav, Zvi, Digdug Millason Ha!ivíit,
Tel-Aviv, 1965, Vols. 1-3.

[^0]: M. Sapiro, Y. Cheouka, "Nituah Mekanografi",

[^1]: 8. The semantic differences of opinion to which certain grammarians subscribe are of no importance here.
[^2]: * Asterisk indicates that the given class is an addition to the corresponding regular conjugation noted in List l. (LI).

